Home
Class 12
MATHS
If d/(dx)f(x)=4x^3-3/(x^4)such that f(2...

If `d/(dx)f(x)=4x^3-3/(x^4)`such that `f(2)=0.`Then f(x) is(A) `x^4+1/(x^3)-(129)/8` (B) `x^3+1/(x^4)+(129)/8`(C) `x^4+1/(x^3)+(129)/8` (D) `x^3+1/(x^4)-(129)/8`

Text Solution

AI Generated Solution

To solve the problem, we need to find the function \( f(x) \) given its derivative \( \frac{d}{dx} f(x) = 4x^3 - \frac{3}{x^4} \) and the condition \( f(2) = 0 \). ### Step-by-step Solution: 1. **Integrate the Derivative**: We start by integrating the derivative \( \frac{d}{dx} f(x) \): \[ f(x) = \int \left( 4x^3 - \frac{3}{x^4} \right) dx ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.2|39 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|46 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

If 2x - (1)/(2x) =4 , find : (ii) 8x^(3) - (1)/( 8x^3)

If f(x) = x^3 - frac{1}{x^3} then f(x)+f(1/x)= (A)2 x^3 (B) 2/x^3 (C) 0 (D) 1

If int((x+1))/sqrt(2x-1) dx= f(x) sqrt(2x-1)+C. Then f(x) is equal to (A) (x+4)/3 (B) (x+3)/4 (C) 2/3 (x+2) (D) x+4

If f(x)=x^(3)-4x+8 , then f(5)=

(x^3sin(tan^(- 1)x^4))/(1+x^8)

"If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))dx is equal to

If f(x^2-6x+6)+f(x^2-4x+4)=2x ,AA x in R then f(-3) + f(9) -5f(1)= ? (A) 7 (B) 8 (C) 9 (D) 10

If f(x)=1-4x , and f^(-1)(x) is the inverse of f(x), then f(-3)f^(-1)(-3)=

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4