Home
Class 12
MATHS
By using the properties of definite int...

By using the properties of definite integrals, evaluate the integrals`int_0^pi (xdx)/(1+sinx)`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^\pi \frac{x}{1 + \sin x} \, dx \) using the properties of definite integrals, we can follow these steps: ### Step 1: Define the Integral Let \[ I = \int_0^\pi \frac{x}{1 + \sin x} \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_0^4 |x-1|dx

By using the properties of definite integrals, evaluate the integrals int_-5^5|x+2|dx

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

By using the properties of definite integrals, evaluate the integrals int_0^(2pi)cos^5x dx

By using the properties of definite integrals, evaluate the integrals int_0^pilog(1+cosx)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) cos^2x dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

By using the properties of definite integrals, evaluate the integrals int_0^(2) xsqrt(2-x)dx

By using the properties of definite integrals, evaluate the integrals int0pi/2(cos^5x dx)/(sin^5+cos^5x)

By using the properties of definite integrals, evaluate the integrals int_0^p(sqrt(x))/(sqrt(x)+sqrt(p-x))dx