Home
Class 12
MATHS
By using the properties of definite int...

By using the properties of definite integrals, evaluate the integrals`int_0^pilog(1+cosx)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^\pi \log(1 + \cos x) \, dx \), we will use the properties of definite integrals. ### Step 1: Use the property of definite integrals We know that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] For our case, \( a = \pi \), so we can write: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) cos^2x dx

By using the properties of definite integrals, evaluate the integrals int_0^(2pi)cos^5x dx

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

By using the properties of definite integrals, evaluate the integrals int_0^4 |x-1|dx

By using the properties of definite integrals, evaluate the integrals int_0^(2) xsqrt(2-x)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

By using the properties of definite integrals, evaluate the integrals int_0^pi (xdx)/(1+sinx)

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2)(2logsinx-logsin2x)dx

By using the properties of definite integrals, evaluate the integrals int_-5^5|x+2|dx

By using the properties of definite integrals, evaluate the integrals int0pi/2(cos^5x dx)/(sin^5+cos^5x)