Home
Class 12
MATHS
Evaluate the definite integralsint0^pi ...

Evaluate the definite integrals`int_0^pi (xtanx)/(secx+tanx)dx`

Text Solution

AI Generated Solution

To evaluate the definite integral \( I = \int_0^\pi \frac{x \tan x}{\sec x + \tan x} \, dx \), we will use the property of definite integrals and some algebraic manipulations. Here’s the step-by-step solution: ### Step 1: Use the property of definite integrals We know that: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx \] For our integral, we can set \( a = \pi \): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.3|24 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|46 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.5|23 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Evaluate the definite integrals int_0^(pi/4)(tanx)dx

Evaluate the definite integrals int_0^1 (dx)/(1-x^2)

Evaluate the definite integrals int_(0)^((pi)/(4)tan x)dx

Evaluate the definite integrals int_0^(pi/2) cos2xdx

Evaluate the definite integrals int0pi/4sin2xdx

Evaluate the definite integrals int_0^(pi/2)cos^2xdx

Evaluate the definite integrals int_0^(pi/2)sin2xtan^(-1)(sinx)dx

int_0^pi tanx/(sinx+tanx)dx

Evaluate : int_0^pi(xtanx)/(secx+tanx)dx

Evaluate the definite integrals int_0^(pi/2)cos^2x""""dx