Home
Class 12
MATHS
Choose the correct answerintsqrt(x^2-8x+...

Choose the correct answer`intsqrt(x^2-8x+7)dx `(A)` `1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C` (B) `1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C`(C) `1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C`(D)`1/2(x-4)sqrt(x^2-8x+7)-(9/2)log|x-4+sqrt(x^2-8x+7)|+C`

A

`1/2(x-4)sqrt(x^2-8x+7)+9log|x-4+sqrt(x^2-8x+7)|+C`

B

`1/2(x+4)sqrt(x^2-8x+7)+9log|x+4+sqrt(x^2-8x+7)|+C`

C

`1/2(x-4)sqrt(x^2-8x+7)-3sqrt(2)log|x-4+sqrt(x^2-8x+7)|+C`

D

`1/2(x-4)sqrt(x^2-8x+7)-(9/2)log|x-4+sqrt(x^2-8x+7)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{x^2 - 8x + 7} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root First, we rewrite the expression inside the square root: \[ x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x - 4)^2 - 3^2 \] Thus, we have: \[ \sqrt{x^2 - 8x + 7} = \sqrt{(x - 4)^2 - 3^2} \] ### Step 2: Substitute for simplification Let \( t = x - 4 \). Then, \( dx = dt \). The integral becomes: \[ \int \sqrt{t^2 - 3^2} \, dt \] ### Step 3: Apply the integration formula We use the formula for the integral of the form \( \int \sqrt{x^2 - a^2} \, dx \): \[ \int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \log |x + \sqrt{x^2 - a^2}| + C \] In our case, \( a = 3 \). Thus, we apply the formula: \[ \int \sqrt{t^2 - 3^2} \, dt = \frac{t}{2} \sqrt{t^2 - 9} - \frac{9}{2} \log |t + \sqrt{t^2 - 9}| + C \] ### Step 4: Substitute back in terms of \( x \) Now we substitute back \( t = x - 4 \): \[ = \frac{x - 4}{2} \sqrt{(x - 4)^2 - 9} - \frac{9}{2} \log |(x - 4) + \sqrt{(x - 4)^2 - 9}| + C \] ### Step 5: Simplify the square root We simplify \( \sqrt{(x - 4)^2 - 9} \): \[ \sqrt{(x - 4)^2 - 9} = \sqrt{x^2 - 8x + 7 - 9} = \sqrt{x^2 - 8x - 2} \] ### Final Answer Thus, the integral evaluates to: \[ \frac{1}{2}(x - 4) \sqrt{x^2 - 8x + 7} - \frac{9}{2} \log |x - 4 + \sqrt{x^2 - 8x + 7}| + C \] Comparing with the options provided, we find that the correct answer is: **(D)** \( \frac{1}{2}(x - 4)\sqrt{x^2 - 8x + 7} - \frac{9}{2}\log|x - 4 + \sqrt{x^2 - 8x + 7}| + C \)

To solve the integral \( \int \sqrt{x^2 - 8x + 7} \, dx \), we will follow these steps: ### Step 1: Simplify the expression under the square root First, we rewrite the expression inside the square root: \[ x^2 - 8x + 7 = (x^2 - 8x + 16) - 9 = (x - 4)^2 - 3^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise Exercise 7.11|20 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.5|23 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.10|10 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer intsqrt(1+x^2)dx is equal to(A) x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C (B) 2/3(1+x^2)^(3/2)+C (C) 2/3x(1+x^2)^(3/2)+C (D) (x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C

Evaluate: int(3x+5)/sqrt(x^2-8x+7)\ dx

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

THe value of x which satisfy the equation (sqrt(5x^2-8x+3))-sqrt((5x^2-9x+4))=sqrt((2x^2-2x))-sqrt((2x^2-3x+1)) is

int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) + c (B) sqrt(x^4 + 2 - 1/x^2) + c (C) sqrt(x^2 + 1/x^2 + 1) + c (D) sqrt((x^4-x^2+1)/x) + c

If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x^2))+bx+c then

If (7+4sqrt(3))^(x^(2-8))+(7-4sqrt(3))^(x^(2-8))=14, then x=

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

lim_(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))