Home
Class 12
MATHS
Integrate the functions1/(x(logx)^m), x ...

Integrate the functions`1/(x(logx)^m), x >0`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{1}{x (\log x)^m} \, dx \) for \( x > 0 \), we will use the method of substitution. Here are the steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides: \[ dt = \frac{1}{x} \, dx \quad \Rightarrow \quad dx = x \, dt = e^t \, dt \] This substitution is valid since \( x = e^t \). ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions 1/(x(logx)^m), x >0

Integrate the functions 1/(x+xlogx)

Integrate the functions x(logx)^2

Integrate the functions ((logx)^2)/x

Integrate the functions 1/(x-x^3)

Integrate the functions ((1+logx)^2)/x

Integrate the functions x^2logx

Integrate the functions 1/(x-sqrt(x))

Integrate the functions (x^2+1)logx

Integrate the functions ((1+x)(x+logx)^2)/x