Home
Class 12
MATHS
Choose the correct answerThe Value of in...

Choose the correct answerThe Value of `int_(-pi/2)^(pi/2)(x^3+xcosx+tan^5x+1)dx`is(A) 0 (B) 2 (C) `pi` (D) 1

Text Solution

AI Generated Solution

To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 + x \cos x + \tan^5 x + 1) \, dx \), we can break it down into parts and analyze the properties of the functions involved. ### Step 1: Split the Integral We can express the integral as: \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^3 \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cos x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \tan^5 x \, dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 1 \, dx \] ...
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(-pi//2)^(pi//2)(x^3+x\ cos x+tan^5x+1)dx , is a. 2 b. pi c. 0 d. 1

The value of int_(-pi//2)^(pi//2)(x^(2)+x cosx+tan^(5)x+1)dx is equal to

Choose the correct answerThe value of int_0^(pi/2) log((4+3sinx)/(4+3cosx))dx (A) 2 (B) 3/4 (C) 0 (D) -2

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

int_(-pi//2)^(pi//2) cos x dx is equal to A) 0 B) 1 C) 2 D) 4

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

int_-(pi/3)^(pi/3) (x^3cosx)/sin^2xdx= (A) 0 (B) 1 (C) -1 (D) none of these

The value of int_(-pi)^(pi)(cos^(2)x)/(1+a^(x))dx,a gt 0 , is

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi