Home
Class 12
MATHS
int(dx)/(sqrt(9x-4x^2))equals(A) 1/9sin^...

`int(dx)/(sqrt(9x-4x^2))`equals(A) `1/9sin^(-1)((9x-8)/8)+C` (B) `1/2sin^(-1)((8x-9)/9)+C`(C) `1/3sin^(-1)((9x-8)/8)+C` (D) `1/2sin^(-1)((9x-8)/9)+C`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{dx}{\sqrt{9x - 4x^2}} \), we will follow these steps: ### Step 1: Rewrite the Integral First, we can rewrite the expression under the square root: \[ 9x - 4x^2 = -4x^2 + 9x = -4\left(x^2 - \frac{9}{4}x\right) \] We can complete the square: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.2|39 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

int(dx)/(sqrt(1-9x^(2)))

int( 1)/(sqrt(9x^(2)-1))dx

I=int dx/(sqrt(1-x^(2))(9+(sin^(-1)x)^(2))

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

intcosx/(1+9sin^2x)dx

Prove that: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2sqrt(2))/3)

Let I=int_1^2 (dx)/sqrt(2x^3-9x^2+12x+4) then

If int sqrt(1-x^2)/x^4dx=A(x).(sqrt(1-x^2))^m where A(x) is a function of x then (A(x))^m = (A) -1/(27x^9) (B) 1/(27x)^9 (C) 1/(3x^9) (D) -1/(3x^9)

Prove that: (9pi)/8-9/4sin^(-1)1/3=9/4sin^(-1)(2sqrt(2))/3