Home
Class 12
MATHS
By using the properties of definite inte...

By using the properties of definite integrals, evaluate the integrals`int_0^(pi/2) cos^2x dx`

Text Solution

AI Generated Solution

To evaluate the integral \(\int_0^{\frac{\pi}{2}} \cos^2 x \, dx\) using properties of definite integrals and trigonometric identities, we can follow these steps: ### Step 1: Use the Trigonometric Identity We start by using the identity for \(\cos^2 x\): \[ \cos^2 x = \frac{1 + \cos 2x}{2} \] This allows us to rewrite the integral as: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_0^(2pi)cos^5x dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2)(sin^(3/2)x dx)/(sin^(3/2)+cos^(3/2)x)

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) (sinx-cosx)/(1+sinxcosx)dx

By using the properties of definite integrals, evaluate the integrals int_0^(2) xsqrt(2-x)dx

By using the properties of definite integrals, evaluate the integrals int0pi/2(cos^5x dx)/(sin^5+cos^5x)

By using the properties of definite integrals, evaluate the integrals int_(-pi/2)^(pi/2)sin^7x dx

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

By using the properties of definite integrals, evaluate the integrals int_0^4 |x-1|dx

By using the properties of definite integrals, evaluate the integrals int_0^pilog(1+cosx)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2)(2logsinx-logsin2x)dx