Home
Class 12
MATHS
Evaluate : int0^(pi/4)log(1+tanx)dxdot...

Evaluate : `int_0^(pi/4)log(1+tanx)dxdot`

Text Solution

Verified by Experts

Given `I=int_0^(pi/4)​log(1+tanx)dx ..........(1)`
On applying property `int_a^(b)f(x)dx=int_a^(b)​f(a+b−x)dx`
Therefore, `I=int_0^(pi/4)log(1+tan(π/4​−x))dx`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

8. int_0^(pi/4) log(1+tanx)dx

Evaluate : int_(0)^(pi/2)log(tanx)dx

Evaluate: int_0^(pi//4)"log"(1+"t a n x")dx

Evaluate int_(0)^(pi//4)In(1+tanx)dx

Evaluate : int_0^(pi/4)(tanx+cotx)^(-2)dx

Evaluate : int_0^(pi/4)(tanx+cotx)^(-2)dx

Evaluate : int_(0)^((pi)/(4)) log(1+tan theta ) d theta

Evaluate: int_0^(pi//2)sqrt(1-cos2x)dxdot

Evaluate: int_0^(pi//2)sqrt(1-cos2x)dxdot

Evaluate int_0^(pi/2) log sin xdx