Home
Class 12
MATHS
By using the properties of definite int...

By using the properties of definite integrals, evaluate the integrals`int_-5^5|x+2|dx`

Text Solution

Verified by Experts

Let` I=int_(-5)^(5)∣x+2∣dx`
It can be seen that (x+2)≤0 on [−5,−2] and (x+2)≥0 on [−2,5].
∴`I=int_(-5)^(-2)​−(x+2)dx+int_(-2)^(5)(x+2)dx`
=`-int_(-5)^(-2)​[x^2/2​+2x]+int_(-2)^(5)​[x^2/2​+2x]`
=`−[((−2)^2​)/2+2(−2)−(−5)^2/2​−2(−5)]+[((5)^2)/2+2(5)−(−2)^2/2​−2(−2)]`
=`−[2−4−25/2​+10]+[25/2​+10−2+4]`
=`−2+4+25/2​−10+25/2​+10−2+4=29`
Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definite integrals, evaluate the integrals int_0^4 |x-1|dx

By using the properties of definite integrals, evaluate the integrals int_2^ 8|x-5|dx and int_-5^5|x+2|dx

By using the properties of definite integrals, evaluate the integrals int0pi/2(cos^5x dx)/(sin^5+cos^5x)

By using the properties of definite integrals, evaluate the integrals int_0^1x(1-x)^n dx

By using the properties of definite integrals, evaluate the integrals int_0^pi (xdx)/(1+sinx)

By using the properties of definite integrals, evaluate the integrals int_0^(2pi)cos^5x dx

By using the properties of definite integrals, evaluate the integrals int_(-pi/2)^(pi/2)sin^7x dx

By using the properties of definite integrals, evaluate the integrals int_0^(2) xsqrt(2-x)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2)(2logsinx-logsin2x)dx

By using the properties of definite integrals, evaluate the integrals int_0^(pi/2) cos^2x dx