Home
Class 12
MATHS
int(dx)/(sin^2xcos^2x)equals(A) tanx+cot...

`int(dx)/(sin^2xcos^2x)`equals(A) `tanx+cotx+C` (B) `tanx-cotx+C`(C) `tanxcotx+C` (D) `tanx-cot2x+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{dx}{\sin^2 x \cos^2 x} \] we can start by rewriting the integrand. We know that \[ \sin^2 x + \cos^2 x = 1. \] We can multiply the integrand by \(1\) in a clever way: \[ 1 = \frac{\sin^2 x + \cos^2 x}{\sin^2 x + \cos^2 x}. \] This allows us to express the integrand as: \[ \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} = \frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x}. \] Now, we can split the integral: \[ \int \left( \frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x} \right) dx = \int \frac{1}{\cos^2 x} \, dx + \int \frac{1}{\sin^2 x} \, dx. \] The first integral can be simplified as: \[ \int \frac{1}{\cos^2 x} \, dx = \int \sec^2 x \, dx = \tan x + C_1, \] and the second integral can be simplified as: \[ \int \frac{1}{\sin^2 x} \, dx = \int \csc^2 x \, dx = -\cot x + C_2. \] Combining these results, we have: \[ \int \frac{dx}{\sin^2 x \cos^2 x} = \tan x - \cot x + C, \] where \(C = C_1 + C_2\) is the constant of integration. Now, we can compare our result with the given options: - (A) \( \tan x + \cot x + C \) - (B) \( \tan x - \cot x + C \) - (C) \( \tan x \cot x + C \) - (D) \( \tan x - \cot^2 x + C \) The correct answer is: \[ \text{(B) } \tan x - \cot x + C. \]

To solve the integral \[ \int \frac{dx}{\sin^2 x \cos^2 x} \] we can start by rewriting the integrand. We know that ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.4|25 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

int(sin^2x-cos^2x)/(sin^2cos^2x)dx is equal to(A) tanx+cotx+c (B) tanx+cose cx+c (C) -tanx+cotx+c (D) tanx+secx+c

int\ (sin^6x + cos^6x)/(sin^2 x*cos^2x)\ dx (i) tanx+ cotx+3x+C (ii) tanx+ cotx-3x+C (iii) tanx-cotx-3x+C (iv) tanx-cotx+3x+C

int(cos2x-1)/(cos2x+1)\ dx= (a) tanx-x+C (b) x+tanx+C (c) x-tanx+C (d) x-cotx+C

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

int(ln(tanx)/(sinxcosx)dx i se q u a lto (a) 1/2ln(tanx)+c (b) 1/2ln(tan^2x)+c (c) 1/2(ln(tanx))^2+c (d) none of these

int(cos4x-1)/(cotx-tanx)dx is equal to

int ( x + cotx ) cot^2x dx

differentiate (tanx)^cotx+(cotx)^(tanx)

intx^2/(xsinx+cosx)^2dx=-(xsecx)/(xsinx+cosx)+f(x)+c , then f(x) may be (A) sinx (B) xsinx (C) tanx (D) cotx

If intsqrt(cotx)/(sinxcosx)dx=asqrt(cotx)+b , then (A) 1 (B) 2 (C) -1 (D) -2