Home
Class 12
MATHS
Integrate the functions1/(sqrt(9-25 x^2)...

Integrate the functions`1/(sqrt(9-25 x^2))`

Text Solution

AI Generated Solution

To solve the integral \( \int \frac{1}{\sqrt{9 - 25x^2}} \, dx \), we will follow these steps: ### Step 1: Rewrite the integral We can factor out the constant from the square root in the denominator: \[ \int \frac{1}{\sqrt{9 - 25x^2}} \, dx = \int \frac{1}{\sqrt{9(1 - \frac{25}{9}x^2)}} \, dx \] This simplifies to: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.2|39 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions 1/(sqrt(7-6x-x^2)

Integrate the functions 1/(sqrt(8+3x-x^2))

Integrate the functions 1/(sqrt(x^2+2x+2))

Integrate the functions 1/(sqrt((2-x)^2+1))

Integrate the functions sqrt(4-x^2)

Integrate the functions 1/(sqrt(1+4x^2))

Integrate the functions 1/(sqrt(1+4x^2))

Integrate the functions 1/(sqrt((x-1)(x-2)))

Integrate the functions (x-1)/(sqrt(x^2-1))

Integrate the functions 1/(x-sqrt(x))