Home
Class 12
MATHS
Evaluate int(-pi/4)^(pi/4) sin^2xdx...

Evaluate `int_(-pi/4)^(pi/4) sin^2xdx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x \, dx \), we can follow these steps: ### Step 1: Use the Trigonometric Identity We will use the identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] This allows us to rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT ENGLISH|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT ENGLISH|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT ENGLISH|Exercise Solved Examples|13 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_(-pi/2) ^(pi/2) sin^2x dx

int_(-pi/4)^(pi/4)sec^(2)xdx

Evaluate int_((-pi)/4)^((pi)/4)sin^2x""dx

Evaluate : int_(-pi//4)^(pi//4) |sin x|dx

Evaluate: int_(-pi//4)^(pi//4)x^3sin^4xdx (ii) int_( a)^asqrt((a-x)/(a+x))dx

Evaluate : int_(-pi/2)^(pi/2)xcos^2 xdx

Evaluate : int_(-pi/2)^(pi/2)xcos^2 xdx

Evaluate: int_(-pi//2)^(pi//2)sin^2x\ dx

Evaluate: int_(-pi//2)^(pi//2)sin^7x dx

int_(-pi/2)^(pi/2) sin x*cos^2 xdx