Home
Class 12
MATHS
Which of the following differential equ...

Which of the following differential equations has y = x as one of its particular solution?(A) `(d^2y)/(dx^2)-x^2(dy)/(dx)+x y=x` (B) `(d^2y)/(dx^2)+x(dy)/(dx)+x y=x` (C) `(d^2y)/(dx^2)-x^2(dy)/(dx)+x y=0` (D) `(d^2y)/(dx^2)+x(dy)/(dx)+x y=0`

Text Solution

Verified by Experts

y=x
differentiate with respect to x
`y'=1`
differentiate with respect to x
`y'+xy''-y'=0`
`xy''=0`
`x^2y'-yx=0`
`y''(x^2y'-yx)=0`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=logp and y=1/p ,then (a) (d^2y)/(dx^2)-2p=0 (b) (d^2y)/(dx^2)+y=0 (c) (d^2y)/(dx^2)+(dy)/(dx)=0 (d) (d^2y)/(dx^2)-(dy)/(dx)=0

y^2+x^2(dy)/(dx)=x y(dy)/(dx)

In which of the following differential equation degree is not defined? (a) (d^2y)/(dx^2)+3(dy/dx)^2=xlog((d^2y)/(dx^2)) (b) ((d^2y)/(dx^2))^2+(dy/dx)^2=xsin((d^2y)/(dx^2)) (c) x=sin((dy/dx)-2y),|x|<1 (d) x-2y=log(dy/dx)

If y=xlog(x/(a+b x)),t h e nx^3(d^2y)/(dx^2)= (a) x(dy)/(dx)-y (b) (x(dy)/(dx)-y)^2 y(dy)/(dx)-x (d) (y(dy)/(dx)-x)^2

For each of the following differential equations verify that the accompanying functions a solution. (i) x(dy)/(dx)=y => y=a x (ii) x+y(dy)/(dx)=0 => y=+-sqrt(a^2-x^2) (iii) x(dy)/(dx)y+y^2 => y=a/(x+a) (iv) x^3(d^2y)/(dx^2)=1 => y=a x+b+1/(2x) (v) y=((dy)/(dx))^2 => y=1/4(x+-a)^2

If y=sin(logx) , prove that x^2(d^2y)/(dx^2)+x(dy)/(dx)+y=0 .

Verity that y=a/x+b is a solution of the differential equation (d^2y)/(dx^2)+2/x((dy)/(dx))=0.

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

If y=x^x , prove that (d^2y)/(dx^2)-1/y((dy)/(dx))^2-y/x=0

Find the order and degree of the following differential equations. i) (dy)/(dx)+y=1/((dy)/(dx)) , ii) e^(e^(3)y)/(dx^(3))-x(d^(2)y)/(dx^(2))+y=0 , iii) sin^(-1)(dy)/(dx)=x+y , iv) log_(e)(dy)/(dx)=ax+by v) y(d^(2)y)/(dx^(2))+x((dy)/(dx))^(2)-4y(dy)/(dx)=0