Home
Class 12
MATHS
For any two vectors -> aand -> bwe alw...

For any two vectors ` -> a`and ` -> b`we always have `| -> adot -> b|lt=| -> a|| -> b|`(Cauchy-Schwartz inequality).

Text Solution

Verified by Experts

Wrong Question
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

For any two sets A and B, A' – B'=

For any two matrices A and B , we have

For any two vectors vec a\ a n d\ vec b write when | vec a+ vec b|=| vec a|+| vec b| holds.

For any vector vec a\ a n d\ vec b prove that | vec a+ vec b|lt=| vec a|+| vec b|dot

For any two sets A and B [B'uu(B'A)]' is equal to

For any two vectors vec aa n d vec b , prove that | vec a+ vec b|lt=| vec a|+| vec b| (ii) | vec a- vec b|lt=| vec a|+| vec b| (iii) | vec a- vec b|geq| vec a|-| vec b|

For any two vectors vec a\ a n d\ vec b , fin d\ ( vec axx vec b). vecbdot

For any two sets A and B, the value of [(A-B) cup B] is equal to

For any two vectors vec a and vec b , show that : ( vec a+ vec b)dot( vec a- vec b)=0, when | vec a|=| vec b|dot

For any two vectors vec a and vec b , prove that: | vec a+ vec b|^2=| vec a|^2+| vec b|^2+2 vec adot vec b , | vec a- vec b|^2=| vec a|^2+| vec b|^2-2 vec adot vec b , | vec a+ vec b|^2+| vec a- vec b|^2=2(| vec a|^2+| vec b|^2) and | vec a+ vec b|^2=| vec a- vec b|^2 iff vec a_|_ vec bdot Interpret the result geometrically.