Home
Class 12
MATHS
Find | vec a- vec b|,if two vector ve...

Find `| vec a- vec b|,`if two vector ` vec a`and ` vec b`are such that `| vec a|=2,| vec b|=3`and ` vec adot vec b=4`.

A

`sqrt5`

B

5

C

2

D

`sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the vector \( \vec{a} - \vec{b} \), we can use the formula for the magnitude of the difference of two vectors. The formula is given by: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b}) \] ### Step 1: Write down the known values We are given: - \( |\vec{a}| = 2 \) - \( |\vec{b}| = 3 \) - \( \vec{a} \cdot \vec{b} = 4 \) ### Step 2: Substitute the known values into the formula Substituting the values into the formula gives: \[ |\vec{a} - \vec{b}|^2 = (2)^2 + (3)^2 - 2(4) \] ### Step 3: Calculate the squares and products Now we calculate each term: - \( (2)^2 = 4 \) - \( (3)^2 = 9 \) - \( 2(4) = 8 \) So we can rewrite the equation as: \[ |\vec{a} - \vec{b}|^2 = 4 + 9 - 8 \] ### Step 4: Simplify the equation Now, simplify the right-hand side: \[ |\vec{a} - \vec{b}|^2 = 4 + 9 - 8 = 5 \] ### Step 5: Take the square root To find \( |\vec{a} - \vec{b}| \), we take the square root of both sides: \[ |\vec{a} - \vec{b}| = \sqrt{5} \] ### Final Answer Thus, the magnitude of the vector \( \vec{a} - \vec{b} \) is: \[ |\vec{a} - \vec{b}| = \sqrt{5} \]

To find the magnitude of the vector \( \vec{a} - \vec{b} \), we can use the formula for the magnitude of the difference of two vectors. The formula is given by: \[ |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b}) \] ### Step 1: Write down the known values We are given: ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=3\ a n d\ vec adot vec b=4

Find | vec a- vec b|,\ if:| vec a|=2,\ | vec b|=5\ a n d\ vec adot vec b=8

Find | vec a- vec b|,\ if:| vec a|=3,\ | vec b|=4\ a n d\ vec adot vec b=1

Find the angle between two vectors vec a\ a n d\ vec b ,\ if:| vec a|=3,\ | vec b|=3\ a n d\ vec adot vec b=1

Find | vec a| and | vec b| , if ( vec a+ vec b)dot(( vec a- vec b))=8 and |vec a|=8 | vec b|

Find the angle between two vectors vec a\ a n d\ vec b , if | vec axx vec b|= vec adot vec bdot

If | vec a|=10 ,\ | vec b|=2\ a n d\ | vec axx vec b|=16 find vec adot vec bdot

If two vectors vec a and vec b are such that | vec a|=2,| vec b|=1 and vec adot vec b=1 , find (3 vec a-5 vec b)dot(2 vec a+7 vec b)dot

If vec a\ a n d\ vec b are two vectors such that | vec a|=4,\ | vec b|=3\ a n d\ vec adot vec b=6. Find the angle between vec a\ a n d\ vec bdot

If two vectors vec a\ a n d\ vec b are such that | vec a|=2,\ | vec b|=1\ a n d\ vec adot vec b=1, then find rthe value of (3 vec a-5 vec b)dot'(2 vec a+7 vec b)'dot