Home
Class 12
MATHS
Find angle thetabetween the vectors v...

Find angle `theta`between the vectors ` veca= hat i+ hat j- hat k`and ` vecb= hat i- hat j+ hat k`.

A

`cos^(-1)(1/3)`

B

`cos^(-1)(-1/2)`

C

`cos^(-1)(-1/3)`

D

`cos^(-1)(1/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle \( \theta \) between the vectors \( \vec{a} = \hat{i} + \hat{j} - \hat{k} \) and \( \vec{b} = \hat{i} - \hat{j} + \hat{k} \), we will use the dot product formula and the magnitudes of the vectors. ### Step-by-Step Solution: 1. **Write down the vectors:** \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] \[ \vec{b} = \hat{i} - \hat{j} + \hat{k} \] 2. **Calculate the magnitudes of both vectors:** - For \( \vec{a} \): \[ |\vec{a}| = \sqrt{(1)^2 + (1)^2 + (-1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] - For \( \vec{b} \): \[ |\vec{b}| = \sqrt{(1)^2 + (-1)^2 + (1)^2} = \sqrt{1 + 1 + 1} = \sqrt{3} \] 3. **Calculate the dot product \( \vec{a} \cdot \vec{b} \):** \[ \vec{a} \cdot \vec{b} = (1)(1) + (1)(-1) + (-1)(1) = 1 - 1 - 1 = -1 \] 4. **Use the dot product formula:** The dot product is also given by: \[ \vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \] Substituting the values we found: \[ -1 = (\sqrt{3})(\sqrt{3}) \cos \theta \] \[ -1 = 3 \cos \theta \] \[ \cos \theta = -\frac{1}{3} \] 5. **Find the angle \( \theta \):** \[ \theta = \cos^{-1}\left(-\frac{1}{3}\right) \] ### Final Answer: The angle \( \theta \) between the vectors \( \vec{a} \) and \( \vec{b} \) is: \[ \theta = \cos^{-1}\left(-\frac{1}{3}\right) \]

To find the angle \( \theta \) between the vectors \( \vec{a} = \hat{i} + \hat{j} - \hat{k} \) and \( \vec{b} = \hat{i} - \hat{j} + \hat{k} \), we will use the dot product formula and the magnitudes of the vectors. ### Step-by-Step Solution: 1. **Write down the vectors:** \[ \vec{a} = \hat{i} + \hat{j} - \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the angle between the vectors vec a= hat i- hat j+ hat k\ a n d\ vec b= hat i+ hat j- hat kdot

Find the vector of magnitude 3, bisecting the angle between the vectors vec a=2 hat i+ hat j- hat k and vec b= hat i-2 hat j+ hat kdot

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

Find the angle between the vectors 5hat i+3 hat j+4 hat k and 6 hat i-8 hat j- hat k .

Find the cosine of the angle between the vectors 4 hat i-3 hat j+3 hat k\ a n d\ 2 hat i- hat j- hat kdot

Find the angle between two vectors A= 2 hat i + hat j - hat k and B=hat i - hat k .

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

Determine alpha such that a vector vec r is at right angles to each of the vectors vec a=alpha hat i+ hat j+3 hat k , vec b=2 hat i+ hat j-alpha hat k , vec c=-2 hat i+alpha hat j+3 hat k

Find the angle between the planes vec rdot(2 hat i- hat j+ hat k)=6a n d vec rdot( hat i+ hat j+2 hat k)=5.