Home
Class 12
MATHS
Find the area of the parallelogram whos...

Find the area of the parallelogram whose adjacent sides are determined by the vectors ` vec a= hat i- hat j+3 hat k` and ` vec b=2 hat i-7 hat j+ hat k`.

Text Solution

Verified by Experts

The area of the parallelogram whose adjacent sides are `veca` and `vecb` is `|veca times vecb|`
Adjacent sides are given as
` vec a= hat i- hat j+3 hat k` and ` vec b=2 hat i-7 hat j+ hat k`.
Then , `veca times vecb`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the area of the parallelogram whose adjacent sides are determined by the vectors vec a= hat i- hat j+3 hat ka n d vec b=2 hat i-7 hat j+ hat kdot

Find the area of a parallelogram whose adjacent sides are given by the vectors vec a=3 hat i+ hat j+4 hat k and vec b= hat i- hat j+ hat k .

Find the area of a parallelogram whose adjacent sides are represented by the vectors 2 hat i-3 hat k and 4 hat j+2 hat k .

Find the area of the triangle whose adjacent sides are determined by the vectors vec(a)=(-2 hat(i)-5 hat(k)) and vec(b)= ( hat(i)- 2 hat(j) - hat(k)) .

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the area of the parallelogram whose diagonals are determined by vectors vec(a)= 3hat(i) + hat(j)-2hat(k) and vec(b)= hat(i) - 3hat(j) + 4hat(k)

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat k

Calculate the area of the parallelogram when adjacent sides are given by the vectors vec(A)=hat(i)+2hat(j)+3hat(k) and vec(B)=2hat(i)-3hat(j)+hat(k) .

Find the volume of the parallelepiped whose coterminous edges are represented by the vectors: i, vec a=2 hat i+3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j+2 hat k ii, vec a=2 hat i-3 hat j+4 hat k , vec b= hat i+2 hat j- hat k , vec c=3 hat i- hat j-2 hat k iii, vec a=11 hat i , vec b=2 hat j , vec c=13 hat k iv, vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat k , vec c= hat i+2 hat j- hat k

Find | vec axx vec b| , if vec a= hat i-7 hat j+7 hat k and vec b=3 hat i-2 hat j+2 hat kdot