Home
Class 12
MATHS
Write the direction ratios of the vector...

Write the direction ratios of the vector ` veca= hat i+ hat j-2 hat k`and hence calculate its direction cosines.

Text Solution

AI Generated Solution

To solve the problem step by step, we will first find the direction ratios of the vector \( \vec{a} = \hat{i} + \hat{j} - 2\hat{k} \) and then calculate its direction cosines. ### Step 1: Identify the components of the vector The vector \( \vec{a} \) can be expressed in terms of its components: - Coefficient of \( \hat{i} \) (x-component) = 1 - Coefficient of \( \hat{j} \) (y-component) = 1 - Coefficient of \( \hat{k} \) (z-component) = -2 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the direction cosines of the vector vec r=6 hat i-2 hat j+3 hat kdot

Writhe the direction cosines of the vectors -2 hat i+ hat j-5 hat kdot

Write the direction cosines of the vector -2 hat i+ hat j-5 hat k

Writhe the direction cosines of the vector hat i+2 hat j+3 hat kdot

Find the unit vector in the direction of the vector veca= hat i+ hat j+2 hat k

Find the direction cosines of the vector hat i+2 hat j+3 hat k .

Find the direction cosines of the vector hat i+2 hat j+3 hat kdot

Find the unit vector in the direction of the vector vec a= hat i+ hat j+ 2 hat k .

Write the direction ratios of the vector 3 vec a+2 vec b where vec a= hat i+ hat j-2 hat k and vec b=2 hat i-4 hat j+5 hat k

Find a unit vector in the direction of the vector vec a=3 hat i-2 hat j+6 hat kdot