Home
Class 12
MATHS
Find the values of x, y and z so that th...

Find the values of x, y and z so that the vectors ` vec a=x hat i+2 hat j+z hat k`and ` vec b=2 hat i+y hat j+ hat k`are equal.

Text Solution

AI Generated Solution

To solve the problem of finding the values of \( x \), \( y \), and \( z \) such that the vectors \( \vec{a} = x \hat{i} + 2 \hat{j} + z \hat{k} \) and \( \vec{b} = 2 \hat{i} + y \hat{j} + \hat{k} \) are equal, we will follow these steps: ### Step 1: Set the vectors equal to each other Since the vectors \( \vec{a} \) and \( \vec{b} \) are equal, we can write: \[ x \hat{i} + 2 \hat{j} + z \hat{k} = 2 \hat{i} + y \hat{j} + \hat{k} \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

find the value of x,y and z so that the vectors vec a= x hat i+ 2 hat j+z hat k and vec b = 2 hat i +y hat j +hat k are equal

Find the value of x ,\ y\ a n d\ z so that the vectors vec a=x hat i+2 hat j+z hat k\ a n d\ vec b=2 hat i+y hat j+ hat k are equal.

Find the value of x\ a n d\ y if the vectors vec a=3 hat i+x hat j- hat k\ a n d vec b=2 hat i+ hat j+y hat k are mutually perpendicular vectors of equal magnitude.

Find the values of x and y if the vectors vec a=3 hat i+x hat j- hat k and vec b=2 hat i+ hat j+y hat k are mutually perpendicular vectors of equal magnitude.

Find the angle between the vectors vec a= hat i+hat j-hat k and vec b=hat i-hat j+hat k

Find the values of x and y so that the vectors 2 hat i+3 hat j and x hat i+y hat j are equal.

Find the value of lambda so that the following vectors are coplanar: vec a= hat i- hat j+ hat k , vec b=2 hat i+ hat j- hat k , vec c=lambda hat i- hat j+lambda hat k

Find the value of lambda so that the following vectorts are coplanar: vec a= hat i- hat j+ hat k ,\ vec b=2 hat i+ hat j- hat k ,\ vec c=lambda hat i- hat j+lambda hat k

Find | vec a xx vec b|, if vec a=2 hat i+ hat j+3 hat k and vec b=3 hat i+5 hat j-2 hat k .

Find the value of lambda so that the following vectorts are coplanar: vec a=2 hat i- hat j+ hat k ,\ vec b= hat i+2 hat j-3 hat k ,\ vec c=lambda hat i+lambda hat j+5 hat kdot