Home
Class 12
MATHS
Let vec a , vec band vec cbe three ve...

Let ` vec a , vec b`and ` vec c`be three vectors such that `| vec a|=3,| vec b|=4,| vec c|=5`and each one of them being perpendicular to the sum of the other two, find `| vec a+ vec b+ vec c|`.

A

`sqrt2`

B

`2sqrt2`

C

`5sqrt2`

D

`3sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Write down the given information We are given three vectors \( \vec{a}, \vec{b}, \vec{c} \) with the following magnitudes: - \( |\vec{a}| = 3 \) - \( |\vec{b}| = 4 \) - \( |\vec{c}| = 5 \) Additionally, each vector is perpendicular to the sum of the other two vectors. ### Step 2: Set up the perpendicular conditions From the problem statement, we know: 1. \( \vec{a} \cdot (\vec{b} + \vec{c}) = 0 \) 2. \( \vec{b} \cdot (\vec{a} + \vec{c}) = 0 \) 3. \( \vec{c} \cdot (\vec{a} + \vec{b}) = 0 \) This implies that: - \( \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \) - \( \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{c} = 0 \) - \( \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \) ### Step 3: Calculate the magnitude of \( |\vec{a} + \vec{b} + \vec{c}| \) To find \( |\vec{a} + \vec{b} + \vec{c}| \), we use the formula: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = (\vec{a} + \vec{b} + \vec{c}) \cdot (\vec{a} + \vec{b} + \vec{c}) \] Expanding this, we have: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{c} + 2(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}) \] ### Step 4: Substitute known values We know: - \( \vec{a} \cdot \vec{a} = |\vec{a}|^2 = 3^2 = 9 \) - \( \vec{b} \cdot \vec{b} = |\vec{b}|^2 = 4^2 = 16 \) - \( \vec{c} \cdot \vec{c} = |\vec{c}|^2 = 5^2 = 25 \) Now we substitute these values: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 9 + 16 + 25 + 2(\vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c}) \] Since \( \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} = 0 \) and \( \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{a} = 0 \) and \( \vec{c} \cdot \vec{a} + \vec{c} \cdot \vec{b} = 0 \), we find that: \[ \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} = 0 \] Thus, we can simplify: \[ |\vec{a} + \vec{b} + \vec{c}|^2 = 9 + 16 + 25 + 2(0) = 50 \] ### Step 5: Find the magnitude Taking the square root gives us: \[ |\vec{a} + \vec{b} + \vec{c}| = \sqrt{50} = 5\sqrt{2} \] ### Final Answer Thus, the magnitude of \( \vec{a} + \vec{b} + \vec{c} \) is: \[ |\vec{a} + \vec{b} + \vec{c}| = 5\sqrt{2} \] ---

To solve the problem, we will follow these steps: ### Step 1: Write down the given information We are given three vectors \( \vec{a}, \vec{b}, \vec{c} \) with the following magnitudes: - \( |\vec{a}| = 3 \) - \( |\vec{b}| = 4 \) - \( |\vec{c}| = 5 \) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

Let vec a , vec b , and vec c are vectors such that | vec a|=3,| vec b|=4 and | vec c|=5, and ( vec a+ vec b) is perpendicular to vec c ,( vec b+ vec c) is perpendicular to vec a and ( vec c+ vec a) is perpendicular to vec bdot Then find the value of | vec a+ vec b+ vec c| .

Let vec a , vec b , vec c be three vectors such that | vec a|=1,| vec b|=2a n d| vec c|=3. If the projection of vec b along a is equal to the projection of vec c along vec aa n d vec b , vec c are perpendicular to each other, find |3 vec a-2 vec b+2 vec c|dot

Let vec a ,\ vec b ,\ vec c be three vectors of magnitudes 3, 4 and 5 respectively. If each one is perpendicular to the sum of the other two vectors, prove that | vec a+ vec b+ vec c|=5sqrt(2) .

Let vec a , vec b , vec c be the three unit vectors such that vec a+5 vec b+3 vec c= vec0 , then vec a. ( vec bxx vec c) is equal to

Let veca,vecb and vecc be three vectors such that |veca |=sqrt(3),|vec b|=5 , vec b .vec c = 10 and the angle between vec b and vec c is pi/3, if vec a is perpendicular to the vector vec b xx vec c, then | veca xx (vecbxxvecc)| is equal to __________.

If vec a and vec b are two vectors such that | vec a|=4,| vec b|=3 and vec a . vec b=6 . Find the angle between vec a and vec b .

Let vec a , vec ba n d vec c be pairwise mutually perpendicular vectors, such that | vec a|=1,| vec b|=2,| vec c|=2. Then find the length of vec a+ vec b+ vec c

If vec a,vec b,vec c are three vectors such that vec a=vec b+vec c and the angle between vec b and vec c is pi/2, then

vec a , vec b , vec c are three vectors such that |vec a | = 5 | vec b | =8, |vec c | = 3 if vec a + vec b + vec c = 8 hati+ 6hatj , find the value of vec a , vec b +vec b .vec c + vec c .vec a

If vec(a) and vec(b) are two vector such that |vec(a) +vec(b)| =|vec(a)| , then show that vector |2a +b| is perpendicular to vec(b) .