Home
Class 12
MATHS
If vec a is a nonzero vector of magni...

If ` vec a` ``is a nonzero vector of magnitude a and `lambda` ``a nonzero scalar, then `lambda`` vec a` `` is unit vector if
(A) `lambda = 1`
(B) `lambda= -1`
(C) `a = |lambda|`
(D) `a = 1/(|lambda|)`

Text Solution

AI Generated Solution

To determine when the vector \( \lambda \vec{a} \) is a unit vector, we need to analyze the conditions under which the magnitude of \( \lambda \vec{a} \) equals 1. ### Step-by-step Solution: 1. **Understanding the Magnitude of a Vector**: The magnitude of a vector \( \vec{a} \) is given as \( a \). Thus, we have: \[ |\vec{a}| = a ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If vec(a) is a non zero vector of magnitude 'a' and lambda a non zero scalar, then lambda vec(a) is unit vector if

If A satisfies the equation x^3-5x^2+4x+lambda=0 , then A^(-1) exists if (a) lambda!=1 (b) lambda!=2 (c) lambda!=-1 (d) lambda!=0

Function f(x)=cosx-2\ lambda\ x is monotonic decreasing when (a) lambda>1//2 (b) lambda 2

veca and vecc are unit collinear vectors and |vecb|=6 , then vecb-3vecc = lambda veca , if lambda is:

If | vec(a) | =3 and |vec(b) |=4 , then the value of lambda for which vec(a) + lambda vec(b) and vec(a) - lambda vec(b) are perpendicular is

If vec a , vec b , vec c are non-coplanar vector and lambda is a real number, then the vectors vec a+2 vec b+3 vec c ,lambda vec b+mu vec ca n d(2lambda-1) vec c are coplanar when a. mu in R b. lambda=1/2 c. lambda=0 d. no value of lambda

If |vec(a)| = 3, |vec(b)| = 4 , then the value 'lambda' for which vec(a) + lambda vec(b) is perpendicular to vec(a) - lambda vec(b) , is

Transition between three energy energy levels in a particular atom give rise to three Spectral line of wevelength , in increasing magnitudes. lambda_(1), lambda_(2) and lambda_(3) . Which one of the following equations correctly ralates lambda_(1), lambda_(2) and lambda_(3) ? lambda_(1)=lambda_(2)-lambda_(3) lambda_(1)=lambda_(3)-lambda_(2) (1)/(lambda_(1))=(1)/(lambda_(2))+(1)/(lambda_(3)) (1)/(lambda_(2))=(1)/(lambda_(3))+(1)/(lambda_(1))

The asymptote of the hyperbola x^2/a^2+y^2/b^2=1 form with ans tangen to the hyperbola triangle whose area is a^2 tan lambda in magnitude then its eccentricity is: (a) sec lambda (b) cosec lambda (c) sec^2 lambda (d) cosec^2 lambda

The asymptote of the hyperbola x^2/a^2-y^2/b^2=1 form with an tangent to the hyperbola triangle whose area is a^2 tan lambda in magnitude then its eccentricity is: (a) sec lambda (b) cosec lambda (c) sec^2 lambda (d) cosec^2 lambda