Home
Class 9
MATHS
Simplify (i) 2^(2/3). 2^(1/3) (ii) (3^(...

Simplify (i) `2^(2/3). 2^(1/3)` (ii) `(3^(1/5))^4` (iii) `(7^(1/5))/(7^(1/3))` (iv) `13^(1/5). 17^(1/5)`

Text Solution

AI Generated Solution

Let's simplify each of the given expressions step by step. ### (i) Simplify \(2^{2/3} \cdot 2^{1/3}\) **Step 1:** Identify the bases and apply the product law of exponents, which states that \(a^m \cdot a^n = a^{m+n}\). \[ 2^{2/3} \cdot 2^{1/3} = 2^{(2/3) + (1/3)} ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify : (i) 2^(2/3). 2^(1/5) (ii) (1/(3^3))^7 (iii) (11^(1/2))/(11^(1/4)) (iv) 7^(1/2). 8^(1/2)

Simplify : (4^(-1)xx\ 3^(-1))^2 (ii) (5^(-1)-:6^(-1))^3 (iii) (2^(-1)+\ 3^(-1))^(-1) (iv) (3^(-1)xx\ 4^(-1))^(-1)xx\ 5^(-1)

Simplify: (i) 5 4/7-:1 3/(10) (ii) 4-:2 2/5

Simplify : (i)3^((1/3)xx(11/5))" "(ii)((1)/(2))^(1/5)xx2^(3/5)

Simplify: (i) {(1/2)^2-(1/4)^3}xx2^3 (ii) {(3^2-2^2)-:(1/5)^2}

Evaluate : (i) 5^(-2) (ii) (-3)^(-2) (iii) (1/4)^(-1) (iv) ((-1)/2)^(-1)

Simplify (i) {(1/3)^(-2) - (1/2)^(-3)} -: (1/4)^(-2). (ii) (5/8)^(-7) xx (8/5)^(-5).

Simplify: {4^(-1)"x"\ 3^(-1)}^2 (ii) \ \ \ {5^(-1)-:6^(-1)}^3 (iii) (2^(-1)+\ 3^(-1))^(-1) (iv) {3^(-1)"x"\ 4^(-1)}^(-1)\ "x"\ 5^(-1) (4^(-1)-\ 5^(-1))-:3^(-1)

Simplify: 3+1 1/5+2/3-7/(15)

Simplify: 7 1/3+\ 3 2/3+\ 5 1/6