Home
Class 9
MATHS
Factorise x^2-23 x^2+142 x-120 ....

Factorise `x^2-23 x^2+142 x-120` .

Text Solution

Verified by Experts

Here, `P(x) = x^3-23x^2+142x-120`
Factors of constant term `120` are
`+-1,+-2,+-3,+-4,+-5,+-6,+-8,+-10,+-12,+-15,+-20,+-24,+-30,+-40,+-60,+-120`
`P(1) = 1-23+142-120 = 0`
From Factor theoram,
`(y-a)` is a factor of `P(y) if P(a) = 0`
Here, as `P(1)` is `0`, so, `(x-1)` is a factor of `P(x)`.
If, we divide `P(x)` by `(x-1)`, we get, `x^2-22x+120`.
Please refer video for the division. ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise x^3-23 x^2+142 x-120 .

Factorise 8x^2y^3-x^5

Factorise : x^(2) - 25

Factorise x^(2)+5x-24 .

Factorise : 3x^2 + 6x^3

Factorise : x^4+3x^2-28

Factorise : x^2 + 4x +3

Factorise x^(2)+9x+20 .

Factorise x^(2) - 2y +xy -4

Factorise : x^(2) - x - 72