Home
Class 9
MATHS
Factorise:(i) 12 x^2-7x+1 (ii) 2x^2+7x+...

Factorise:(i) `12 x^2-7x+1` (ii) `2x^2+7x+3` (iii) `6x^2+5x-6` (iv) `3x^2-x-4`

Text Solution

AI Generated Solution

Let's factorize the given polynomials step by step. ### (i) Factorize \( 12x^2 - 7x + 1 \) 1. **Identify \( a \), \( b \), and \( c \)**: Here, \( a = 12 \), \( b = -7 \), and \( c = 1 \). 2. **Calculate the product \( ac \)**: \[ ac = 12 \times 1 = 12 ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Factorise : 2x^(2) - 7x + 6

Factorize: (i) 2x^2+5x+3 (ii) 6x^2+5x-6

Factorise: 2x^2-5/6x+1/12

Factorise (i) x^(2)+9x+18 (ii) 6x^(2)+7x-3 (iii) 2x^(2)-7x-15 (iv) 84-2r-2r^(2)

Examine the nature of the roots of the equations (i) 2x^(2)+2x+3=0 (ii) 2x^(2)-7x+3=0 (iii) x^(2)_5x-2=0 (iv) 4x^(2)-4x+1=0

Solve : (i) 2x^(2)-7x=39 (ii) x^(2)=5x (iii) x^(2)=16

factorise (i) 2x^(3)-3x^(2)-17x+30 (ii) x^(3) -6x^(2)+11x-6 (iii) x^(3)+x^(2)-4x-4 (iv) 3x^(2)-x^(2)-3x+1

Factorize : (i) x^3+3x^2+3x-7 (ii) x^3-3x^2+3x+7 (iii) x^6-7x^3-8

Find the roots of the quadratic equations by applying the quadratic formula. (i) 2x^2 -7x+3 =0 (ii) 2x^2+x-4 =0 (iii) 4x^2+4sqrt3x+3=0 (iv) 2x^2+x+4 = 0

Without solving, find the nature of the roots of the following equations: (i) 3x^(2)-7x+5=0 . (ii) 4x^(2)+4x+1=0 . (iii) 3x^(2)+7x+2=0 . (iv) x^(2)+px-q^(2)=0 .