Home
Class 10
MATHS
In an equilateral triangle, prove that ...

In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Text Solution

Verified by Experts


In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. [Pythagoras theorem]
In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.
In ΔABC,
AB = BC = CA (sides of the triangle), AD is the altitude ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that three times the square of any side of an equilateral-triangle is equal to four times the square of the altitude.

Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

In an equilateral triangle with side a, prove that the altitude is of length (a sqrt3)/2

In a right angled triangle, five times the square on the hypotenuse is equal to four times the sum of the squares on the medians drawn from the acute angles. Prove it.

An equilateral triangle if its altitude is 3.2 cm.

Prove that the sum of the squares of the diagonals of parallelogram is equal to the sum of the squares of its sides.

Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle.

Prove that in a triangle, if the square of one side is equal to the sum of the squares of the other two sides, then the angles opposite to the first side is a right angle.

Fill in the balnks : (i) In a right triangle, the square of the hypotenuse is equal to the……….of the square of the other two sides. (ii) If the square of one side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is......... (iii) Of all the line segments that can be drawn to a given line form a given point outside it, the.............is the shortest.