Home
Class 10
MATHS
If sin3A=cos(A-26^@), where 3A is an a...

If `sin3A=cos(A-26^@)`, where 3A is an acute angle, find the value of A.

Text Solution

AI Generated Solution

To solve the equation \( \sin(3A) = \cos(A - 26^\circ) \), where \( 3A \) is an acute angle, we can follow these steps: ### Step 1: Use the Complementary Angle Identity We know that \( \sin(\theta) = \cos(90^\circ - \theta) \). Therefore, we can rewrite \( \sin(3A) \) in terms of cosine: \[ \sin(3A) = \cos(90^\circ - 3A) \] Now, we can set this equal to the right side of the original equation: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If s e c4A=cos e c(A-20^@) , where 4A is an acute angle, find the value of A.

If sin 3A =cos(A-10^(@)) where 3A is an acute angle , then find the value of A.

If tan A =cot (A-18^(@)) where 2A is an acute angle , find the value of A.

If tan2A=cot(A-18^0), where 2A is an acute angle, find the value of A.

If sec5A=cos e c\ (A+36^@) , where 5A is an acute angle, find the value of A

If tan2A=cot(A-18^0), where 2A is an acute angle, find the value of Adot