Home
Class 8
MATHS
Solve: (3t-2)/4-(2t+3)/3=2/3-t...

Solve: `(3t-2)/4-(2t+3)/3=2/3-t`

Text Solution

Verified by Experts

`(3t-2)/4 - (2t+3)/3 = 2/3 - t`
`(3(3t-2)- 4(2t+3))/12 = 2/3 - t`
`(9t - 6 - 8t - 12)/12 = 2/3 - t`
`(t - 18)/12 = (2 - 3t)/3`
`(t-18)(3) = (2-3t)(12)`
`3t - 54 = 24 - 36t`
`3t + 36t =24 + 54`
`39t = 78`
...
Promotional Banner

Topper's Solved these Questions

  • LINEAR EQUATIONS IN ONE VARIABLE

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|19 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE

    NCERT ENGLISH|Exercise EXERCISE 2.1|12 Videos
  • LINEAR EQUATIONS IN ONE VARIABLE

    NCERT ENGLISH|Exercise EXERCISE 2.3|9 Videos
  • INTRODUCTION TO GRAPHS

    NCERT ENGLISH|Exercise EXERCISE 15.2|4 Videos
  • MENSURATION

    NCERT ENGLISH|Exercise EXERCISE 11.4|8 Videos

Similar Questions

Explore conceptually related problems

Simplify t(3t+2)-(5t -4) +7

If x=t^(2)andy=t^(3) , then (d^(2)y)/(dx^(2)) is equal to: a) (3)/(2) b) (3)/(2)t c) (3)/(2t) d) (3)/(4t)

Area of the triangle formed by the threepoints 't_1'. 't_2' and 't_3' on y^2=4ax is K|(t_1-t_2) (t_2-t_3)(t_3-t_1)| then K=

x=f(t) satisfies (d^2x)/dt^2=2t+3 and for t=0, x=0, dx/dt=0 , then f(t) is given by (A) t^3+t^2/2+t (B) (2t^3)/3+(3t^2)/2+t (C) t^3/3+(3t^2)/2 (D) none of these

(t)/(t-3)-(t-2)/(2)=(5t-3)/(4t-12) If x and y are solutions of the equation above and ygtx , what is the value of y-x ?

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)] , [a t_2t_3,a(t_2 +t_3)] , [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is: (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3) + a(t_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

The vertices of a triangle are [a t_1t_2,a(t_1 +t_2)] , [a t_2t_3,a(t_2 +t_3)] , [a t_3t_1,a(t_3 +t_1)] Then the orthocenter of the triangle is (a) (-a, a(t_1+t_2+t_3)-at_1t_2t_3) (b) (-a, a(t_1+t_2+t_3)+at_1t_2t_3) (c) (a, a(t_1+t_2+t_3)+at_1t_2t_3) (d) (a, a(t_1+t_2+t_3)-at_1t_2t_3)

Prove that: tan^-1(t) +tan^-1 ((2t)/(1-t^2))=tan^-1( (3t-t^3)/(1-3t^2)), if - 1/sqrt(3),tlt 1/sqrt(3)

If x=t^2,y=t^3,t h e n(d^2y)/(dx^2) is (a) 3/2 (b) 3/(4t) (c) 3/(2t) (d) (3t)/2

Remove the brackets and simplify : 3(3s - 2t) - 4 (s+2t)