Home
Class 8
MATHS
Using the given pattern, find the missin...

Using the given pattern, find the missing numbers. `1^2+2^2+2^2=3^2 2^2+3^2+6^2=7^2 3^2+4^2+12^2=13^2 4^2+5^2+[\_?]^2=21^2 5^2+[\_?]^2+30^2=32^2 6^2+7^2+[\_?]^2=[\_?]^2=[\_?][\_?]^2`

Text Solution

AI Generated Solution

To find the missing numbers in the given patterns, we will analyze the patterns step by step. ### Step 1: Identify the pattern in the first three equations. The equations given are: 1. \( 1^2 + 2^2 + 2^2 = 3^2 \) 2. \( 2^2 + 3^2 + 6^2 = 7^2 \) 3. \( 3^2 + 4^2 + 12^2 = 13^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • SQUARES AND SQUARE ROOTS

    NCERT ENGLISH|Exercise EXERCISE 6.4|9 Videos
  • SQUARES AND SQUARE ROOTS

    NCERT ENGLISH|Exercise EXERCISE 6.2|2 Videos
  • RATIONAL NUMBERS

    NCERT ENGLISH|Exercise EXERCISE 1.1|11 Videos
  • UNDERSTANDING QUADRILATERALS

    NCERT ENGLISH|Exercise EXERCISE 3.3|11 Videos

Similar Questions

Explore conceptually related problems

Using the given pattern, find the missing numbers: 1^2+2^2+2^2=3^2 2^2+3^2+6^2=7^2 3^2+4^2+12^2=13^2 4^2+5^2+()^2=21^2 5^2+()^2+30^2=31^2 6^2+7^2+()^2=()^2

Evaluate the following: |[1^2, 2^2, 3^2],[2^2, 3^2, 4^2],[3^2, 4^2, 5^2]|

The value of the determinant [(1^2, 2^2, 3^2, 4^2) ,(2^2, 3^2 ,4^2,5^2) ,(3^2, 4^2,5^2 ,6^2) ,(4^2, 5^2, 6^2, 7^2)] is equal to 1 b. 0 c. 2 d. 3

Sum of n terms the series : 1^2-2^2+3^2-4^2+5^2-6^2+

Sum of n terms the series : 1^2-2^2+3^2-4^2+5^2-6^2+....

Find the sum 5^(2)+ 6^(2) + 7^(2) + ... + 20^(2) .

Find the rank of the matrix A = [[1^2,2^2,3^2,4^2],[2^2,3^2,4^2,5^2],[3^2,4^2,5^2,6^2],[4^2,5^2,6^2,7^2]]

Find the sum to n terms of the series: 3/(1^2 .2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+......

Find the value of the determinant |[2^2, 2^3 ,2^4],[ 2^3 ,2^4 ,2^5],[ 2^4, 2^5, 2^6]| .

Find the mode for the following series: 2.5, 2.3 ,2.2, 2.2, 2.4, 2.7, 2.7, 2.5, 2.3, 2.2, 2.6, 2.2