Home
Class 8
MATHS
Obtain the product of (i) xy, yz, zx ...

Obtain the product of (i) `xy, yz, zx` (ii) `a,-a^2, a^3` (iii) `2, 4y, 8y^2, 16y^3` (iv) `a, 2b, 3c,6abc` (v) `m,-mn, mnp`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the question, we need to find the product of the given sets of algebraic expressions step by step. ### (i) Product of `xy, yz, zx` 1. **Write the expression**: \[ xy \cdot yz \cdot zx \] 2. **Rearrange the terms**: \[ (x \cdot y) \cdot (y \cdot z) \cdot (z \cdot x) = x \cdot y^2 \cdot z^2 \] 3. **Combine like terms**: \[ = x^1 \cdot y^{1+1} \cdot z^{1+1} = x^1 \cdot y^2 \cdot z^2 \] 4. **Final result**: \[ = x^1 y^2 z^2 \] ### (ii) Product of `a, -a^2, a^3` 1. **Write the expression**: \[ a \cdot (-a^2) \cdot a^3 \] 2. **Rearrange the terms**: \[ = -1 \cdot a^1 \cdot a^2 \cdot a^3 \] 3. **Combine like terms**: \[ = -1 \cdot a^{1+2+3} = -a^6 \] 4. **Final result**: \[ = -a^6 \] ### (iii) Product of `2, 4y, 8y^2, 16y^3` 1. **Write the expression**: \[ 2 \cdot 4y \cdot 8y^2 \cdot 16y^3 \] 2. **Rearrange the terms**: \[ = (2 \cdot 4 \cdot 8 \cdot 16) \cdot (y \cdot y^2 \cdot y^3) \] 3. **Calculate the numerical part**: \[ 2 \cdot 4 = 8, \quad 8 \cdot 8 = 64, \quad 64 \cdot 16 = 1024 \] 4. **Combine like terms**: \[ = 1024 \cdot y^{1+2+3} = 1024y^6 \] 5. **Final result**: \[ = 1024y^6 \] ### (iv) Product of `a, 2b, 3c, 6abc` 1. **Write the expression**: \[ a \cdot 2b \cdot 3c \cdot 6abc \] 2. **Rearrange the terms**: \[ = (2 \cdot 3 \cdot 6) \cdot (a \cdot a) \cdot (b \cdot b) \cdot (c \cdot c) \] 3. **Calculate the numerical part**: \[ 2 \cdot 3 = 6, \quad 6 \cdot 6 = 36 \] 4. **Combine like terms**: \[ = 36 \cdot a^{1+1} \cdot b^{1+1} \cdot c^{1+1} = 36a^2b^2c^2 \] 5. **Final result**: \[ = 36a^2b^2c^2 \] ### (v) Product of `m, -mn, mnp` 1. **Write the expression**: \[ m \cdot (-mn) \cdot (mnp) \] 2. **Rearrange the terms**: \[ = -1 \cdot m \cdot m \cdot n \cdot m \cdot n \cdot p \] 3. **Combine like terms**: \[ = -1 \cdot m^{1+1+1} \cdot n^{1+1} \cdot p^1 = -m^3n^2p \] 4. **Final result**: \[ = -m^3n^2p \] ### Summary of Results: 1. \( x^1 y^2 z^2 \) 2. \( -a^6 \) 3. \( 1024y^6 \) 4. \( 36a^2b^2c^2 \) 5. \( -m^3n^2p \)

To solve the question, we need to find the product of the given sets of algebraic expressions step by step. ### (i) Product of `xy, yz, zx` 1. **Write the expression**: \[ xy \cdot yz \cdot zx \] ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.3|5 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.1|4 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.4|3 Videos
  • COMPARING QUANTITIES

    NCERT ENGLISH|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

If a = 3x - 5y, b = 6x + 3y and c = 2y - 4x . Find : (i) a + b - c , (ii) 2a - 3b + 4c .

Find the following products: (i) 7/5x^2y(3/5x y^2+2/5x) (ii) 4/3a(a^2+b^2-3c^2)

Obtain the volume of rectangular boxes with the following length, breadth and height respectively. (i) 5a, 3a^2, 7a^4 (ii) 2p, 4q, 8r (iii) xy, 2x^2y, 2xy^2 (iv) a, 2b, 3c

Factorise the expressions. (i) ax^2 + bx (ii) 7p^2 + 21q^2 (iii) 2x^3 + 2xy^2 + 2xz^2 (iv) am^2 + bm^2 + bn^2 + an^2 (v) (lm + l) + m +1 (vi) y(y+z) + 9(y+z) (vii) 5y^2 - 20y - 8z + 2yz (viii) 10ab + 4a + 5b +2 (ix) 6xy - 4y + 6 - 9x

Find the common factors of the given terms. (i) 12x,36 (ii) 2y,22xy (iii) 14pq, 28p^2q^2 (iv) 2x,3x^2,4 (v) 6abc, 24ab^2, 12a^2b (vi) 16x^3,-4x^2,32x (vii) 10pq, 20qr, 30rp (viii) 3x^2 y^3, 10x^3y^2, 6x^2y^2z

Find the product. (i) (5-2x)(3+x) (ii) (x+7y)(7x-y) (iii) (a^2+b)(a+b^2) (iv) (p^2-q^2)(2p+q)

Evaluate : (viii) (3x + 4y) (3x -4y) (9x^2 + 16y^2)

Write down the following in the product form: x^3y^4 (ii) 6x^7y (iii) 9x y^2z^2 (iv) 10 a^3b^3c^3

Find the following products: (i) (z^2+2)(z^2-3) (ii) (3x-4y)(2x-4y) (iii) (3x^2-4x y)(3x^2-3x y) (iv) (x+1/5)(x+5)

Verify whether the following are true or false . (i) -3 is a zero of x-3 (ii) -(1)/(3) is a zero of 3x+1 (iii) -(4)/(5) is a zero of 4-5y (iv) 0 and 2 are the zeroes of t^(2) -2t (v) -3 is a zero of y^(2)+y-6