Home
Class 8
MATHS
Use a suitable identity to get each of t...

Use a suitable identity to get each of the following products. (i) `(x+3)(x+3)` (ii) `(2y+5)(2y+5)` (iii) `(2a-7)(2a-7)` (iv) `((3a)-1/2)((3a)-1/2)` (v) `(1.1m-0.4)(1.1m+04)` (vi) `(a^2+b^2)(-a^2+b^2)` (viI) `(6x-7)(6x+7)` (vii) `(-a+c)(-a+c)` (viii) `(x/2+(3y)/4)(x/2+((3y)/4)` (ix) `(7a-9b)(7a-9b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given products using suitable identities, we will apply the following algebraic identities: 1. \( (a + b)^2 = a^2 + 2ab + b^2 \) 2. \( (a - b)^2 = a^2 - 2ab + b^2 \) 3. \( (a + b)(a - b) = a^2 - b^2 \) Now, let's solve each part step by step. ### (i) \( (x + 3)(x + 3) \) Using the identity \( (a + b)^2 \): - Here, \( a = x \) and \( b = 3 \). - Therefore, \( (x + 3)^2 = x^2 + 2(x)(3) + 3^2 \). - Simplifying gives: \( x^2 + 6x + 9 \). **Hint:** Recognize that multiplying a binomial by itself is the same as squaring it. ### (ii) \( (2y + 5)(2y + 5) \) Using the identity \( (a + b)^2 \): - Here, \( a = 2y \) and \( b = 5 \). - Therefore, \( (2y + 5)^2 = (2y)^2 + 2(2y)(5) + 5^2 \). - Simplifying gives: \( 4y^2 + 20y + 25 \). **Hint:** Identify the coefficients and apply the square of a binomial. ### (iii) \( (2a - 7)(2a - 7) \) Using the identity \( (a - b)^2 \): - Here, \( a = 2a \) and \( b = 7 \). - Therefore, \( (2a - 7)^2 = (2a)^2 - 2(2a)(7) + 7^2 \). - Simplifying gives: \( 4a^2 - 28a + 49 \). **Hint:** Remember that the square of a binomial includes a negative middle term. ### (iv) \( (3a - \frac{1}{2})(3a - \frac{1}{2}) \) Using the identity \( (a - b)^2 \): - Here, \( a = 3a \) and \( b = \frac{1}{2} \). - Therefore, \( (3a - \frac{1}{2})^2 = (3a)^2 - 2(3a)(\frac{1}{2}) + \left(\frac{1}{2}\right)^2 \). - Simplifying gives: \( 9a^2 - 3a + \frac{1}{4} \). **Hint:** Pay attention to the fractions when squaring. ### (v) \( (1.1m - 0.4)(1.1m + 0.4) \) Using the identity \( (a - b)(a + b) \): - Here, \( a = 1.1m \) and \( b = 0.4 \). - Therefore, \( (1.1m)^2 - (0.4)^2 \). - Simplifying gives: \( 1.21m^2 - 0.16 \). **Hint:** This is a difference of squares; remember the formula. ### (vi) \( (a^2 + b^2)(-a^2 + b^2) \) Using the identity \( (a + b)(a - b) \): - Here, \( a = b^2 \) and \( b = a^2 \). - Therefore, \( (b^2)^2 - (a^2)^2 \). - Simplifying gives: \( b^4 - a^4 \). **Hint:** Rearranging terms can help identify the correct identity. ### (vii) \( (6x - 7)(6x + 7) \) Using the identity \( (a - b)(a + b) \): - Here, \( a = 6x \) and \( b = 7 \). - Therefore, \( (6x)^2 - (7)^2 \). - Simplifying gives: \( 36x^2 - 49 \). **Hint:** Look for the pattern of a difference of squares. ### (viii) \( \left(\frac{x}{2} + \frac{3y}{4}\right)\left(\frac{x}{2} + \frac{3y}{4}\right) \) Using the identity \( (a + b)^2 \): - Here, \( a = \frac{x}{2} \) and \( b = \frac{3y}{4} \). - Therefore, \( \left(\frac{x}{2}\right)^2 + 2\left(\frac{x}{2}\right)\left(\frac{3y}{4}\right) + \left(\frac{3y}{4}\right)^2 \). - Simplifying gives: \( \frac{x^2}{4} + \frac{3xy}{4} + \frac{9y^2}{16} \). **Hint:** Be careful with fractions when applying the square of a binomial. ### (ix) \( (7a - 9b)(7a - 9b) \) Using the identity \( (a - b)^2 \): - Here, \( a = 7a \) and \( b = 9b \). - Therefore, \( (7a)^2 - 2(7a)(9b) + (9b)^2 \). - Simplifying gives: \( 49a^2 - 126ab + 81b^2 \). **Hint:** Ensure you correctly apply the coefficients in the identity.

To solve the given products using suitable identities, we will apply the following algebraic identities: 1. \( (a + b)^2 = a^2 + 2ab + b^2 \) 2. \( (a - b)^2 = a^2 - 2ab + b^2 \) 3. \( (a + b)(a - b) = a^2 - b^2 \) Now, let's solve each part step by step. ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.4|3 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.2|5 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.1|4 Videos
  • COMPARING QUANTITIES

    NCERT ENGLISH|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

Find the following products: (i) (x+2)(x+3) (ii) (x+7)(x-2) (iii) y-4)(y-3) (iv) (y-7)(y+3) (vi) (2x-3)(2x+5) (vii) (3x+4)(3x-5)

Find the product. (i) (5-2x)(3+x) (ii) (x+7y)(7x-y) (iii) (a^2+b)(a+b^2) (iv) (p^2-q^2)(2p+q)

Simplify each of the following: (i) 7x^3y+9y x^3 (ii) 12 a^2b+3b a^2

Use the identity (x+a)(x+b)=x^2+(a+b)x+ab to find the following products. (i) (x+3)(x+7) (ii) (4x+5)(4x+1) (iii) (4x+5)(4x+1) (iv) (4x+5)(4x-1) (v) (2x+5y)(2x+3y) (vi) (2a^2+9)(2a^2+5) (vii) (xyz-4)(xyz-2)

Find the following products: (i) 7/5x^2y(3/5x y^2+2/5x) (ii) 4/3a(a^2+b^2-3c^2)

Find each of the following products: (-1/(27)a^2b^2)xx\ (9/2a^3b^2c^2) (-7x y)xx(1/4x^2y z)

Factorize each of the following algebraic expressions: (1) 6x(2x-y)+7y(2x-y) (2) 2r(y-x)+s(x-y) (3) 7a(2x-3)+3b(2x-3) (4) 9a(6a-5b)-12 a^2(6a-5b)

Write down the following in the product form: x^3y^4 (ii) 6x^7y (iii) 9x y^2z^2 (iv) 10 a^3b^3c^3

Find the degree of each of the following polynomials : (i) 3x^(4)-x^(2)+8 " " (ii) y^(2)-5y+7 " " (iii) 3x+4 " " (iv) 3 (v) x-2x^(2)+5x^(7) " " (vi) 2y^(2)-5y^(6)+1 " "(vii) x^(3)-1 " " (viii) 3x+5x^(5)+1

Expand each of the following, using suitable identities: (i) (x+2y+4z)^2 (ii) (2x-y+z)^2 (iii) (-2x+3y+2z)^2 (iv) (3a-7b-c)^2 (v) (-2x+5y-3z)^2 (vi) [1/4a-1/2b+1]^2