Home
Class 8
MATHS
Simplify. <b> (i) (x²-5) (x+5)+25 (ii)...

Simplify.
(i) (x²-5) (x+5)+25
(ii) (a²+5) (b³+3)+5
(iii) (t+s²) (t²-s)
(iv) (a+b)(c-d)+(9a-b)(c+d)+2(ac+bd)
(v) (x+y)(2x+y)+(x+2y)+(x+2y)(x-y)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's simplify the given expressions step by step. ### (i) Simplify \((x^2 - 5)(x + 5) + 25\) 1. **Expand the expression**: \[ (x^2 - 5)(x + 5) = x^2 \cdot x + x^2 \cdot 5 - 5 \cdot x - 5 \cdot 5 \] This simplifies to: \[ x^3 + 5x^2 - 5x - 25 \] 2. **Add 25**: \[ x^3 + 5x^2 - 5x - 25 + 25 \] The \(-25\) and \(+25\) cancel each other out: \[ x^3 + 5x^2 - 5x \] **Final Result**: \(x^3 + 5x^2 - 5x\) ### (ii) Simplify \((a^2 + 5)(b^3 + 3) + 5\) 1. **Expand the expression**: \[ (a^2 + 5)(b^3 + 3) = a^2 \cdot b^3 + a^2 \cdot 3 + 5 \cdot b^3 + 5 \cdot 3 \] This simplifies to: \[ a^2b^3 + 3a^2 + 5b^3 + 15 \] 2. **Add 5**: \[ a^2b^3 + 3a^2 + 5b^3 + 15 + 5 \] This simplifies to: \[ a^2b^3 + 3a^2 + 5b^3 + 20 \] **Final Result**: \(a^2b^3 + 3a^2 + 5b^3 + 20\) ### (iii) Simplify \((t + s^2)(t^2 - s)\) 1. **Expand the expression**: \[ (t + s^2)(t^2 - s) = t \cdot t^2 + t \cdot (-s) + s^2 \cdot t^2 + s^2 \cdot (-s) \] This simplifies to: \[ t^3 - ts + s^2t^2 - s^3 \] **Final Result**: \(t^3 - ts + s^2t^2 - s^3\) ### (iv) Simplify \((a + b)(c - d) + (9a - b)(c + d) + 2(ac + bd)\) 1. **Expand each term**: \[ (a + b)(c - d) = ac - ad + bc - bd \] \[ (9a - b)(c + d) = 9ac + 9ad - bc - bd \] \[ 2(ac + bd) = 2ac + 2bd \] 2. **Combine all terms**: \[ (ac - ad + bc - bd) + (9ac + 9ad - bc - bd) + (2ac + 2bd) \] Combine like terms: \[ (ac + 9ac + 2ac) + (-ad + 9ad) + (bc - bc) + (-bd - bd + 2bd) \] This simplifies to: \[ 12ac + 8ad - bd \] **Final Result**: \(12ac + 8ad - bd\) ### (v) Simplify \((x + y)(2x + y) + (x + 2y) + (x + 2y)(x - y)\) 1. **Expand the first term**: \[ (x + y)(2x + y) = 2x^2 + xy + 2xy + y^2 = 2x^2 + 3xy + y^2 \] 2. **Expand the second term**: \[ (x + 2y)(x - y) = x^2 - xy + 2xy - 2y^2 = x^2 + xy - 2y^2 \] 3. **Combine all terms**: \[ (2x^2 + 3xy + y^2) + (x + 2y) + (x^2 + xy - 2y^2) \] Combine like terms: \[ (2x^2 + x^2) + (3xy + xy) + (y^2 - 2y^2) + x + 2y \] This simplifies to: \[ 3x^2 + 4xy - y^2 + x + 2y \] **Final Result**: \(3x^2 + 4xy - y^2 + x + 2y\) ---

Let's simplify the given expressions step by step. ### (i) Simplify \((x^2 - 5)(x + 5) + 25\) 1. **Expand the expression**: \[ (x^2 - 5)(x + 5) = x^2 \cdot x + x^2 \cdot 5 - 5 \cdot x - 5 \cdot 5 \] ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.2|5 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.3|5 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.5|8 Videos
  • COMPARING QUANTITIES

    NCERT ENGLISH|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

Solution of (dy)/(dx)+2x y=y is (a) ( b ) (c) y=c (d) e^( e ) (f) x-( g ) x^((( h )2( i ))( j ) (k))( l ) (m) (n) (b) ( o ) (p) y=c( q ) e^( r ) (s) (t) x^((( u )2( v ))( w )-x (x))( y ) (z) (aa) (c) ( d ) (e) y=c( f ) e^(( g ) x (h))( i ) (j) (k) (d) ( l ) (m) y=c (n) e^( o ) (p)-( q ) x^((( r )2( s ))( t ) (u))( v ) (w) (x)

If (x)/(x-y)=log((a)/(x-y)) then (dy)/(dx) is (a) (x)/(y), (b) 2-(x)/(y), (c) 2, (d) (x-y)/(x)

Factorise the following : (i) 9a^(2)-b^(2) " " (ii) 81x^(3)-x " " (iii) x^(3)-49xy^(2) " " (iv) a^(2)-(b-c)^(2) (v) (x-y)^(3)-x+y " " (vi)x^(2)y^(2)+1-x^(2)-y^(2) " " (vii) 25(a+b)^(2)-49(a-b)^(2) " " (viii) xy^(5)-x^(5)y (ix) x^(8)-256 " " (x) x^(8)-81y^(8)

Use the identity (x+a)(x+b)=x^2+(a+b)x+ab to find the following products. (i) (x+3)(x+7) (ii) (4x+5)(4x+1) (iii) (4x+5)(4x+1) (iv) (4x+5)(4x-1) (v) (2x+5y)(2x+3y) (vi) (2a^2+9)(2a^2+5) (vii) (xyz-4)(xyz-2)

Find the product. (i) (5-2x)(3+x) (ii) (x+7y)(7x-y) (iii) (a^2+b)(a+b^2) (iv) (p^2-q^2)(2p+q)

Expand the following (i) (4a-b+ac)^(2) (ii) (3a-5b-c)^(2) (iii) (-x+2y-3z)^(2)

Work out the following divisions. (i) (10x - 25) -: 5 (ii) (10x - 25) -: (2x - 5) (iii) 10y(6y + 21) -: 5(2y + 7) (iv) 96abc(3a -12)(5b - 30) -: 144(a - 4)(b - 6)

If y=5cos x-3sin x ,then (d^(2)y)/(dx^(2)) is equal to (a) -y (b) y (c) 25y (d) 9y

Simplify: [5-3x+2y-(2x-y)]-(3x-7y+9)

For each of the graphs given in Fig. 4.5 select the equation whose graph it is from the choices given below:(a) For Fig 4.5(i)(i) x + y = 0 (ii) y = 2x (iii) y = x (iv) y = 2x + 1 (b) For fig 4,5(ii)(i) x + y = 0 (ii) y = 2x (iii) y = 2x + 4 (iv) y = x - 4