Home
Class 8
MATHS
Using identities, evaluate. (i) 71^2 ...

Using identities, evaluate. (i) `71^2` (ii) `99^2` (iii) `102^2` (iv) `998^2` (v) `5.2^2` (vi) `297 xx 303` (vii) `78 xx 82` (viii) `892` (ix) `105 xx 95`Type here in ASCII with maths in back tick:

Text Solution

AI Generated Solution

The correct Answer is:
Let's evaluate each of the expressions step by step using algebraic identities. ### (i) Evaluate `71^2` 1. Rewrite `71` as `70 + 1`. 2. Use the identity: \((a + b)^2 = a^2 + 2ab + b^2\). 3. Substitute \(a = 70\) and \(b = 1\): \[ 71^2 = (70 + 1)^2 = 70^2 + 2 \cdot 70 \cdot 1 + 1^2 \] 4. Calculate each term: - \(70^2 = 4900\) - \(2 \cdot 70 \cdot 1 = 140\) - \(1^2 = 1\) 5. Add them together: \[ 4900 + 140 + 1 = 5041 \] **Answer:** \(71^2 = 5041\) ### (ii) Evaluate `99^2` 1. Rewrite `99` as `100 - 1`. 2. Use the identity: \((a - b)^2 = a^2 - 2ab + b^2\). 3. Substitute \(a = 100\) and \(b = 1\): \[ 99^2 = (100 - 1)^2 = 100^2 - 2 \cdot 100 \cdot 1 + 1^2 \] 4. Calculate each term: - \(100^2 = 10000\) - \(-2 \cdot 100 \cdot 1 = -200\) - \(1^2 = 1\) 5. Add them together: \[ 10000 - 200 + 1 = 9801 \] **Answer:** \(99^2 = 9801\) ### (iii) Evaluate `102^2` 1. Rewrite `102` as `100 + 2`. 2. Use the identity: \((a + b)^2 = a^2 + 2ab + b^2\). 3. Substitute \(a = 100\) and \(b = 2\): \[ 102^2 = (100 + 2)^2 = 100^2 + 2 \cdot 100 \cdot 2 + 2^2 \] 4. Calculate each term: - \(100^2 = 10000\) - \(2 \cdot 100 \cdot 2 = 400\) - \(2^2 = 4\) 5. Add them together: \[ 10000 + 400 + 4 = 10404 \] **Answer:** \(102^2 = 10404\) ### (iv) Evaluate `998^2` 1. Rewrite `998` as `1000 - 2`. 2. Use the identity: \((a - b)^2 = a^2 - 2ab + b^2\). 3. Substitute \(a = 1000\) and \(b = 2\): \[ 998^2 = (1000 - 2)^2 = 1000^2 - 2 \cdot 1000 \cdot 2 + 2^2 \] 4. Calculate each term: - \(1000^2 = 1000000\) - \(-2 \cdot 1000 \cdot 2 = -4000\) - \(2^2 = 4\) 5. Add them together: \[ 1000000 - 4000 + 4 = 996004 \] **Answer:** \(998^2 = 996004\) ### (v) Evaluate `5.2^2` 1. Rewrite `5.2` as `5 + 0.2`. 2. Use the identity: \((a + b)^2 = a^2 + 2ab + b^2\). 3. Substitute \(a = 5\) and \(b = 0.2\): \[ 5.2^2 = (5 + 0.2)^2 = 5^2 + 2 \cdot 5 \cdot 0.2 + 0.2^2 \] 4. Calculate each term: - \(5^2 = 25\) - \(2 \cdot 5 \cdot 0.2 = 2\) - \(0.2^2 = 0.04\) 5. Add them together: \[ 25 + 2 + 0.04 = 27.04 \] **Answer:** \(5.2^2 = 27.04\) ### (vi) Evaluate `297 x 303` 1. Rewrite `297` as `300 - 3` and `303` as `300 + 3`. 2. Use the identity: \(a^2 - b^2 = (a - b)(a + b)\). 3. Substitute \(a = 300\) and \(b = 3\): \[ 297 \times 303 = (300 - 3)(300 + 3) = 300^2 - 3^2 \] 4. Calculate each term: - \(300^2 = 90000\) - \(3^2 = 9\) 5. Subtract: \[ 90000 - 9 = 89991 \] **Answer:** \(297 \times 303 = 89991\) ### (vii) Evaluate `78 x 82` 1. Rewrite `78` as `80 - 2` and `82` as `80 + 2`. 2. Use the identity: \(a^2 - b^2 = (a - b)(a + b)\). 3. Substitute \(a = 80\) and \(b = 2\): \[ 78 \times 82 = (80 - 2)(80 + 2) = 80^2 - 2^2 \] 4. Calculate each term: - \(80^2 = 6400\) - \(2^2 = 4\) 5. Subtract: \[ 6400 - 4 = 6396 \] **Answer:** \(78 \times 82 = 6396\) ### (viii) Evaluate `8.9^2` 1. Rewrite `8.9` as `9 - 0.1`. 2. Use the identity: \((a - b)^2 = a^2 - 2ab + b^2\). 3. Substitute \(a = 9\) and \(b = 0.1\): \[ 8.9^2 = (9 - 0.1)^2 = 9^2 - 2 \cdot 9 \cdot 0.1 + 0.1^2 \] 4. Calculate each term: - \(9^2 = 81\) - \(-2 \cdot 9 \cdot 0.1 = -1.8\) - \(0.1^2 = 0.01\) 5. Combine: \[ 81 - 1.8 + 0.01 = 79.21 \] **Answer:** \(8.9^2 = 79.21\) ### (ix) Evaluate `105 x 95` 1. Rewrite `105` as `100 + 5` and `95` as `100 - 5`. 2. Use the identity: \(a^2 - b^2 = (a - b)(a + b)\). 3. Substitute \(a = 100\) and \(b = 5\): \[ 105 \times 95 = (100 + 5)(100 - 5) = 100^2 - 5^2 \] 4. Calculate each term: - \(100^2 = 10000\) - \(5^2 = 25\) 5. Subtract: \[ 10000 - 25 = 9975 \] **Answer:** \(105 \times 95 = 9975\) ---

Let's evaluate each of the expressions step by step using algebraic identities. ### (i) Evaluate `71^2` 1. Rewrite `71` as `70 + 1`. 2. Use the identity: \((a + b)^2 = a^2 + 2ab + b^2\). 3. Substitute \(a = 70\) and \(b = 1\): \[ ...
Promotional Banner

Topper's Solved these Questions

  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.4|3 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.2|5 Videos
  • ALGEBRAIC EXPRESSIONS AND IDENTITIES

    NCERT ENGLISH|Exercise EXERCISE 9.1|4 Videos
  • COMPARING QUANTITIES

    NCERT ENGLISH|Exercise EXERCISE 8.1|6 Videos

Similar Questions

Explore conceptually related problems

Use identities to evaluate: (998)^(2)

Use identities to evaluate: (502)^(2)

Use identities to evaluate: (101)^(2)

Use identities to evaluate: (97)^(2)

Evaluate (i) ┌1 (ii) ┌2

Using suitable identity, evaluate: (97)^(3)

Using binomial theorem, evaluate : (99)^5

Using suitable identity, evaluate: (104)^(3)

Use identities the evaluate : (i) (101)^(2) (ii) (998)^(2)

Using Identity find (i) (4p-3q)^2 (ii) (49)^2