An ant is moving around a few food pieces of different shapes scattered on the floor. For which food-piece would the ant have to take a longer round? Remember, circumference of a circle can be obtained by using the expression `c=2pir,` where r is the radius of the circle.
An ant is moving around a few food pieces of different shapes scattered on the floor. For which food-piece would the ant have to take a longer round? Remember, circumference of a circle can be obtained by using the expression `c=2pir,` where r is the radius of the circle.
Text Solution
AI Generated Solution
To determine which food piece the ant has to take a longer round around, we will calculate the total distance the ant travels for each food piece. We will use the formula for the circumference of a semicircle and add any additional straight distances as needed.
### Step-by-Step Solution:
1. **Identify the Diameter of the Food Pieces:**
- For all food pieces, the diameter is given as **2.8 cm**.
2. **Calculate the Radius:**
...
Topper's Solved these Questions
MENSURATION
NCERT ENGLISH|Exercise SOLVED EXAMPLES|11 VideosMENSURATION
NCERT ENGLISH|Exercise EXERCISE 11.4|8 VideosMENSURATION
NCERT ENGLISH|Exercise EXERCISE 11.2|11 VideosLINEAR EQUATIONS IN ONE VARIABLE
NCERT ENGLISH|Exercise EXERCISE 2.3|9 VideosPLAYING WITH NUMBERS
NCERT ENGLISH|Exercise EXERCISE 16.1|10 Videos
Similar Questions
Explore conceptually related problems
Uniform cicular motion is used in physics to describe the motion of an object traveling at a constant speed in a circle. The speed of the object is called tangential velocity and it can be calculated using the formula abovce, where r is the radius of the circle and T is the time is takes for the object to make one complete circle, called a peroid. WHich of the following formulas could be used to find the length of one period if you know the tengential velocity and the radius of the circle ?
The fact tht a changing magnetic flux produces an electric field is basic to the operation of many high energy particle accelerators. Since the principle was first successfully applied to the acceleration of electrons (or beta particles) in a device called the betatron, this method of acceleration is often given that name. The general idea involved is shown in Fig. An electromagnet is used to produce a changing flux through a circular loop defined by the doughnut shaped vacuum chamber. We see that there will be an electric field E along the circular length of the doughnut, i.e. circling the magnet poles, given by 2piaE = d(phi)//dt , where 'a' is the radius of the doughnut. Any charged particle inside the vacuum chamber will experience a force qE and will accelerate. Ordinarily, the charged particle would shoot out the vacuum chamber and becomes lost. However, if the magnetic field at the position of the doughnut is just proper to satisfy the relation, Centripetal force = magnetic force or mv^(2)//a = qvB then the charge will travel in a circle within the doughnut. By proper shaping of the magnet pole piece, this relation can be satisfied. As a result, the charge will move at high speed along the loop within the doughnut. Each time it goes around the loop, it has, in effect, fallen through a potential difference equal to the induced emf, namely epsilon = (d(phi)//dt) . Its energy after 'n' trips around the loop will be q(n(epsilon)) . Variable magnetic flux
The fact tht a changing magnetic flux produces an electric field is basic to the operation of many high energy particle accelerators. Since the principle was first successfully applied to the acceleration of electrons (or beta particles) in a device called the betatron, this method of acceleration is often given that name. The general idea involved is shown in Fig. An electromagnet is used to produce a changing flux through a circular loop defined by the doughnut shaped vacuum chamber. We see that there will be an electric field E along the circular length of the doughnut, i.e. circling the magnet poles, given by 2piaE = d(phi)//dt , where 'a' is the radius of the doughnut. Any charged particle inside the vacuum chamber will experience a force qE and will accelerate. Ordinarily, the charged particle would shoot out the vacuum chamber and becomes lost. However, if the magnetic field at the position of the doughnut is just proper to satisfy the relation, Centripetal force = magnetic force or mv^(2)//a = qvB then the charge will travel in a circle within the doughnut. By proper shaping of the magnet pole piece, this relation can be satisfied. As a result, the charge will move at high speed along the loop within the doughnut. Each time it goes around the loop, it has, in effect, fallen through a potential difference equal to the induced emf, namely epsilon = (d(phi)//dt) . Its energy after 'n' trips around the loop will be q(n(epsilon)) . Magnetic field which keeps the particles in circular path must
The fact tht a changing magnetic flux produces an electric field is basic to the operation of many high energy particle accelerators. Since the principle was first successfully applied to the acceleration of electrons (or beta particles) in a device called the betatron, this method of acceleration is often given that name. The general idea involved is shown in Fig. An electromagnet is used to produce a changing flux through a circular loop defined by the doughnut shaped vacuum chamber. We see that there will be an electric field E along the circular length of the doughnut, i.e. circling the magnet poles, given by 2piaE = d(phi)//dt , where 'a' is the radius of the doughnut. Any charged particle inside the vacuum chamber will experience a force qE and will accelerate. Ordinarily, the charged particle would shoot out the vacuum chamber and becomes lost. However, if the magnetic field at the position of the doughnut is just proper to satisfy the relation, Centripetal force = magnetic force or mv^(2)//a = qvB then the charge will travel in a circle within the doughnut. By proper shaping of the magnet pole piece, this relation can be satisfied. As a result, the charge will move at high speed along the loop within the doughnut. Each time it goes around the loop, it has, in effect, fallen through a potential difference equal to the induced emf, namely epsilon = (d(phi)//dt) . Its energy after 'n' trips around the loop will be q(n(epsilon)) . Working of betatron is not based upon which of the following theories?
Weight of a body depends directly upon acceleration due to gravity g . Value of g depends upon many factors. It depends upon the shape of earth, rotation earth etc. Weight of a body at a pole is more then that at a place on equator because g is maximum at poles and minimum on equator. Acceleration due to gravity g varies with latitude lambda as per relation given below : g_(rot)=g-Romega^(2)cos^(2)lambda where R is radius of earth and omega is angular velocity of earth. A body of mass m weighs W_(r ) in a train at rest. The train then begins to run with a velocity v around the equator from west to east. It observed that weight W_(m) of the same body in the moving train is different from W_(r ) . Let v_(e ) be the velocity of a point on equator with respect to axis of rotation of earth and R be the radius of the earth. Clearly the relative between earth and trainwill affect the weight of the body. Difference between Weight W_(r ) and the gravitational attraction on the body can be given as
Weight of a body depends directly upon acceleration due to gravity g . Value of g depends upon many factors. It depends upon the shape of earth, rotation earth etc. Weight of a body at a pole is more then that at a place on equator because g is maximum at poles and minimum on equator. Acceleration due to gravity g varies with latitude lambda as per relation given below : g_(rot)=g-Romega^(2)cos^(2)lambda where R is radius of earth and omega is angular velocity of earth. A body of mass m weighs W_(r ) in a train at rest. The train then begins to run with a velocity v around the equator from west to east. It observed that weight W_(m) of the same body in the moving train is different from W_(r ) . Let v_(e ) be the velocity of a point on equator with respect to axis of rotation of earth and R be the radius of the earth. Clearly the relative between earth and trainwill affect the weight of the body. Weight W_(m) of the body can be given as
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} If buoyant force were also taken into account then value of terminal speed would have
Direction : Resistive force proportional to object velocity At low speeds, the resistive force acting on an object that is moving a viscous medium is effectively modeleld as being proportional to the object velocity. The mathematical representation of the resistive force can be expressed as R = -bv Where v is the velocity of the object and b is a positive constant that depends onthe properties of the medium and on the shape and dimensions of the object. The negative sign represents the fact that the resistance froce is opposite to the velocity. Consider a sphere of mass m released frm rest in a liquid. Assuming that the only forces acting on the spheres are the resistive froce R and the weight mg, we can describe its motion using Newton's second law. though the buoyant force is also acting on the submerged object the force is constant and effect of this force be modeled by changing the apparent weight of the sphere by a constant froce, so we can ignore it here. Thus mg - bv = m (dv)/(dt) rArr (dv)/(dt) = g - (b)/(m) v Solving the equation v = (mg)/(b) (1- e^(-bt//m)) where e=2.71 is the base of the natural logarithm The acceleration becomes zero when the increasing resistive force eventually the weight. At this point, the object reaches its terminals speed v_(1) and then on it continues to move with zero acceleration mg - b_(T) =0 rArr m_(T) = (mg)/(b) Hence v = v_(T) (1-e^((vt)/(m))) In an experimental set-up four objects I,II,III,IV were released in same liquid. Using the data collected for the subsequent motions value of constant b were calculated. Respective data are shown in table. {:("Object",I,II,II,IV),("Mass (in kg.)",1,2,3,4),(underset("in (N-s)/m")("Constant b"),3.7,1.4,1.4,2.8):} Which object has greatest terminal speed in the liquid ?
Ram and Ali have been fast friends since childhood. Ali neglected studies and now has no means to earn money other than a channel whereas Ram has become an engineer. Now both are working in the same factory. Ali uses camel to transport the load within the factory. Due to low salary and degradation in health of camel, Ali becomes worried and meets his friend Ram and discusses his problems. Ram collected some data and with some assumptions concluded the following: i. The load used in each trip is 1000kg and has friction coefficient mu_k=0.1 and mu_s=0.2 . ii. Mass of camel is 500kg . iii. Load is accelerated for first 50m with constant acceleration, then it is pulled at a constant speed of 5ms^-1 for 2km and at last stopped with constant retardation in 50m . iv. From biological data, the rate of consumption of energy of camel can be expressed as P=18xx10^3v+10^4Js^-1 where P is the power and v is the velocity of the camel. After calculations on different issues, Ram suggested proper food, speed of camel, etc. to his friend. For the welfare of Ali, Ram wrote a letter to the management to increase his salary. (Assuming that the camel exerts a horizontal force on the load): The ratio of the energy consumed by the camel during uniform motion for the two cases when it moves with speed 5ms^-1 to the case when it moves with 10ms^-1
Let C_1, C_2, ,C_n be a sequence of concentric circle. The nth circle has the radius n and it has n openings. A points P starts travelling on the smallest circle C_1 and leaves it at an opening along the normal at the point of opening to reach the next circle C_2 . Then it moves on the second circle C_2 and leaves it likewise to reach the third circle C_3 and so on. Find the total number of different path in which the point can come out of nth circle.
NCERT ENGLISH-MENSURATION-EXERCISE 11.1
- A square and a rectangular field with measurements as given in the fi...
Text Solution
|
- Mrs. Kaushik has a square plot with the measurement as shown in the f...
Text Solution
|
- The shape of a garden is rectangular in the middle and semi circular a...
Text Solution
|
- A flooring tile has the shape of a parallelogram whose base is 24 cm ...
Text Solution
|
- An ant is moving around a few food pieces of different shapes scattere...
Text Solution
|