Home
Class 8
MATHS
Divide z (5z^2-80) by 5z(z+4)...

Divide `z (5z^2-80)` by `5z(z+4)`

A

`z+4`

B

`z-5`

C

`z-4`

D

`z+5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of dividing \( z(5z^2 - 80) \) by \( 5z(z + 4) \), we will follow these steps: ### Step 1: Factor the numerator The numerator is \( z(5z^2 - 80) \). We can factor out the common term from \( 5z^2 - 80 \). 1. **Factor out 5** from \( 5z^2 - 80 \): \[ 5z^2 - 80 = 5(z^2 - 16) \] 2. **Recognize the difference of squares** in \( z^2 - 16 \): \[ z^2 - 16 = (z + 4)(z - 4) \] So, we can rewrite the numerator: \[ z(5z^2 - 80) = z \cdot 5(z^2 - 16) = z \cdot 5(z + 4)(z - 4) \] ### Step 2: Rewrite the expression Now, we can rewrite the entire expression we want to divide: \[ \frac{z(5(z + 4)(z - 4))}{5z(z + 4)} \] ### Step 3: Cancel common factors Now, we can simplify the expression by canceling out the common factors in the numerator and denominator. 1. **Cancel \( 5z \)** from both the numerator and the denominator: \[ \frac{z \cdot 5(z + 4)(z - 4)}{5z(z + 4)} = \frac{(z - 4)}{1} \] 2. **Cancel \( (z + 4) \)** from both the numerator and the denominator: \[ = z - 4 \] ### Final Answer Thus, the result of dividing \( z(5z^2 - 80) \) by \( 5z(z + 4) \) is: \[ \boxed{z - 4} \] ---

To solve the problem of dividing \( z(5z^2 - 80) \) by \( 5z(z + 4) \), we will follow these steps: ### Step 1: Factor the numerator The numerator is \( z(5z^2 - 80) \). We can factor out the common term from \( 5z^2 - 80 \). 1. **Factor out 5** from \( 5z^2 - 80 \): \[ 5z^2 - 80 = 5(z^2 - 16) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • FACTORISATION

    NCERT ENGLISH|Exercise EXERCISE 14.4|21 Videos
  • FACTORISATION

    NCERT ENGLISH|Exercise EXERCISE 14.3|5 Videos
  • FACTORISATION

    NCERT ENGLISH|Exercise EXERCISE 14.1|3 Videos
  • EXPONENTS AND POWERS

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|9 Videos
  • INTRODUCTION TO GRAPHS

    NCERT ENGLISH|Exercise EXERCISE 15.2|4 Videos

Similar Questions

Explore conceptually related problems

Divide 25xyz by 5z

Divide: 5z^3-6z^2+7z\ \ by 2z (ii) sqrt(3)\ a^4+\ 2sqrt(3)\ a^3+3a^2-6a\ by 3a

Divide: 5x^3-15 x^2+25 x\ b y\ 5x 4z^3+6z^2-z\ b y-1/2z

If z= -3 + sqrt2i , then prove that z^(4) + 5z^(3) + 8z^(2) + 7z + 4 is equal to -29

If |z| = 2 and the locus of 5z-1 is the circle having radius 'a' and z_1^2 + z_2^2 - 2 z_1 z_2 cos theta = 0 then |z_1| : |z_2| =

If z_(1) =3 -4i and z_(2) = 5 + 7i ,verify (i) |-z_(1)| =|z_(1)| (ii) |z_(1) +z_(2)| lt |z_(2)|

If 1 , z_1 , z_2 ,......., z_6 are the 7th roots of unity then the value of (2-z_1)(2-z_2)(2-z_3)(2-z_4)(2-z_5)(2-z_6)= (a) 63 b. 127 c. 32 d. 31

If z_(1) = 2+ 3i and z_(2) = 5-3i " then " z_(1)z_(2) is

Multiply each of the monomial : (-3x^2y),\ (4x y^2z),\ (-x y^2z^2)a n d\ (4/5z)

Solve for z : z^2-(3-2i)z=(5i-5)dot