Home
Class 8
MATHS
Factorise : 10x^2 - 18x^3 + 14x^4...

Factorise : `10x^2 - 18x^3 + 14x^4`

Text Solution

AI Generated Solution

To factorise the expression \(10x^2 - 18x^3 + 14x^4\), we can follow these steps: ### Step 1: Identify the common factors First, we need to identify the common factors in all the terms of the expression. The terms are \(10x^2\), \(-18x^3\), and \(14x^4\). ### Step 2: Factor out the greatest common factor (GCF) The coefficients of the terms are 10, -18, and 14. The GCF of these coefficients is 2. Additionally, the lowest power of \(x\) in the expression is \(x^2\). Therefore, the GCF of the entire expression is \(2x^2\). ...
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    NCERT ENGLISH|Exercise EXERCISE 14.4|21 Videos
  • FACTORISATION

    NCERT ENGLISH|Exercise EXERCISE 14.3|5 Videos
  • FACTORISATION

    NCERT ENGLISH|Exercise EXERCISE 14.1|3 Videos
  • EXPONENTS AND POWERS

    NCERT ENGLISH|Exercise SOLVED EXAMPLES|9 Videos
  • INTRODUCTION TO GRAPHS

    NCERT ENGLISH|Exercise EXERCISE 15.2|4 Videos

Similar Questions

Explore conceptually related problems

Factorise : 3x^(2) - 11x - 4

Factorise : 16 x^(2) - 8x - 3

Factorise : (i) 5x^2 - 10x

Factorise : x^4+3x^2-28

Factorise : x^2 + 4x +3

Factorise : 3x^2 + 6x^3

Factorise : 7-12x - 4x^(2)

Factorise : 4x^(2) + 3x - 10

Factorise : 3x^5 - 6x^4 - 2x^3 + 4x^2 + x-2

Factorise : x^(4) + x^(2) +1