Home
Class 12
MATHS
Prove that [ veca+ vecb , vecb+ vecc , v...

Prove that `[ veca+ vecb , vecb+ vecc , vecc+ veca]=2[ veca , vecb , vecc]`.

Text Solution

AI Generated Solution

To prove that \([ \vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] = 2[\vec{a}, \vec{b}, \vec{c}]\), we will follow these steps: ### Step 1: Write the Left-Hand Side (LHS) The LHS of the equation is given by: \[ [\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}] \] ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

[ veca + vecb vecb + vecc vecc + veca ]=[ veca vecb vecc ] , then

For any four vectors, prove that ( veca × vecb )×( vecc × vecd )=[ veca vecc vecd ] vecb −[ vecb vecc vecd ] veca

Let veca,vecb, vecc be any three vectors, Statement 1: [(veca+vecb, vecb+vecc,vecc+veca)]=2[(veca, vecb, vecc)] Statement 2: [(vecaxxvecb, vecbxxvecc, veccxxveca)]=[(veca, vecb, vecc)]^(2)

Prove that veca. [(vecb + vecc) xx (veca + 3 vecb + 4 vecc) ]= [{:(veca,vecb,vecc):}]

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If [veca xx vecb vecb xx vecc vecc xx veca]=lambda[veca vecb vecc]^2 , then lambda is equal to

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

Let veca , vecb,vecc be three vectors such that veca bot ( vecb + vecc), vecb bot ( vecc + veca) and vecc bot ( veca + vecb) , " if " |veca| =1 , |vecb| =2 , |vecc| =3 , " then " | veca + vecb + vecc| is,

If |veca|=4, |vecb|=4 and |vecc|=5 such that veca bot vecb + vecc, vecb bot (vecc + veca) and vecc bot (veca + vecb) , then |veca + vecb + vecc| is: