Home
Class 11
MATHS
Evaluate the limits, if exist(lim)(xrarr...

Evaluate the limits, if exist`(lim)_(xrarr0)(log(1+x^3))/(sin^3x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{\sin^3 x}, \] we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form: \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{\sin^3 x} = \lim_{x \to 0} \frac{\log(1 + x^3)}{x^3} \cdot \frac{x^3}{\sin^3 x}. \] ### Step 2: Evaluate the first limit Now, we will evaluate the first limit: \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{x^3}. \] Using the standard limit result: \[ \lim_{t \to 0} \frac{\log(1 + t)}{t} = 1, \] we can substitute \( t = x^3 \). As \( x \to 0 \), \( t \to 0 \) as well. Thus, \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{x^3} = 1. \] ### Step 3: Evaluate the second limit Next, we evaluate the second limit: \[ \lim_{x \to 0} \frac{x^3}{\sin^3 x}. \] Using the standard limit result: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1, \] we can rewrite this limit as: \[ \lim_{x \to 0} \left(\frac{x}{\sin x}\right)^3 = \left(1\right)^3 = 1. \] ### Step 4: Combine the results Now we can combine the results from both limits: \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{\sin^3 x} = \left(\lim_{x \to 0} \frac{\log(1 + x^3)}{x^3}\right) \cdot \left(\lim_{x \to 0} \frac{x^3}{\sin^3 x}\right) = 1 \cdot 1 = 1. \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{\sin^3 x} = 1. \] ---

To evaluate the limit \[ \lim_{x \to 0} \frac{\log(1 + x^3)}{\sin^3 x}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT ENGLISH|Exercise EXERCISE 13.2|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 12.1|4 Videos
  • LINEAR INEQUALITIES

    NCERT ENGLISH|Exercise EXERCISE 6.2|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate the limits, if exist lim_(x-gt0)(log_e(1+2x))/(x)

Evaluate the limits, if exist (lim)_(x->0)(e^(sinx)-1)/x

lim_(xrarr0)(x^3 log x)

Evaluate the limit ("lim")_(xrarr0)(sin3x)/x

lim_(xrarr0)[(log(1+x) -x + x^2/2)/x^3]

lim_(xrarr0) (sin 3 x)/(2x)

Evaluate the following limit: (lim)_(x->0)("log"(1+x))/(3^x-1)

lim_(xrarr0) (3sqrt(1+x-1))/(x)

lim_(xrarr0)(sin(x)/(4))/(x)

lim_(xrarr0) (x^(2)-3x+2)