Home
Class 12
MATHS
Show that the four points A, B, C and D...

Show that the four points A, B, C and D with position vectors`4 hat i+5\ hat j+ hat k ,-(\ hat j+ hat k),3 hat j+9\ hat j+4 hat k\ a n d\ 4( hat i+ hat j+ hat k)`, respectively are coplanar.

Text Solution

AI Generated Solution

To show that the four points A, B, C, and D with given position vectors are coplanar, we can use the scalar triple product method. The points are coplanar if the scalar triple product of the vectors formed by these points is zero. ### Step-by-Step Solution: 1. **Identify the Position Vectors:** - Let \( \vec{A} = 4\hat{i} + 5\hat{j} + \hat{k} \) - Let \( \vec{B} = -\hat{j} - \hat{k} \) - Let \( \vec{C} = 3\hat{j} + 9\hat{j} + 4\hat{k} = 12\hat{j} + 4\hat{k} \) (correcting the representation) ...
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise Exercise 10.4|10 Videos
  • VECTOR ALGEBRA

    NCERT ENGLISH|Exercise EXERCISE 10.2|19 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT ENGLISH|Exercise EXERCISE 11.3|14 Videos

Similar Questions

Explore conceptually related problems

Find the value of lambda so that the four points, A, B, C and D with position vectors 4 hat i+5 hat j+ hat k ,- hat j- hat k ,3 hat i+lambda hat j+4 hat k and -4 hat i+4 hat j+4 hat k respectively are coplanar.

Show that the four points with position vectors 4 hat i+8 hat j+12 hat k ,\ 2 hat i+4\ hat j+6 hat k ,3 hat i+5\ hat j+4 hat k\ a n d\ 5 hat i+8\ hat j+5 hat k are coplanar.

Show that the point A , B and C with position vectors vec a =3 hat i - 4 hat j -4 hat k vec b = 2 hat i j + hat k and vec c = hat i - 3 hat j - 5 hat k , respectively form the vertices of a right angled triangle.

Area of a rectangle having vertices A, B, C and D with position vectors - hat i+1/2 hat j+4 hat k , hat i+1/2 hat j+4 hat k , hat i-1/2 hat j+4 hat k and - hat i-1/2 hat j+4 hat k respectively is(A) 1/2 (B) 1 (C) 2 (D) 4

The four points whose position vector are 6 hat i - 7 hat j,16 hat i - 29 hat j - 4 hat k, 3 hat j - 6 hat k, 2 hat i + 5 hat j + 10 hat k are coplanar

Show that the points A, B, C with position vectors 2 hat i- hat j+ hat k ,\ hat i-3 hat j-5 hat k and 3 hat i-4 hat j-4 hat k respectively, are the vertices of a right angled triangle. Also, find the remaining angles of the triangle.

If three points A, B and C with position vectors hat(i) + x hat(j) +3 hat(k) , 3 hat(i) + 4 hat(j) + 7hat( k) and y hat(i) - 2 hat(j) - 5 hat(k) respectively are collinear, then (x,y) =

Show that the four points having position vectors 6 hat i-7 hat j ,16 hat i-19 hat j-4 hat k ,3 hat j-6 hat k ,2 hat i-5 hat j+10 hat k are coplanar.

Show that the points A, B and C with position vectors, veca=3 hat i-4 hat j-4 hat k , vecb=2 hat i- hat j+ hat k and vecc= hat i-3 hat j-5 hat k respectively form the vertices of a right angled triangle.

Find the value of lambda for which the four points with position vectors hat j- hat k ,\ 4 hat i+5 hat j+lambda hat k ,\ 3 hat i+9 hat j+4 hat k\ a n d-4 hat i+4 hat j+4 hat k are coplanar.