Home
Class 12
MATHS
If x = p+q, y = pomega + q omega^2 , and...

If x = p+q, y = p`omega` + q `omega^2` , and z= p`omega^2` + q`omega` where `omega` is a complex cube root of unity then xyz =

Promotional Banner

Similar Questions

Explore conceptually related problems

If w is a complex cube-root of unity then,

If x=p+q,y=pomega+q omega^(2) and z=p omega^(2)+q omega , where omega is a complex cube root of unity, then xyz equals to

If omega is a complex cube root of unity, then (1+omega^2)^4=

If omega is a complex cube root of unity, then (1-omega+(omega)^2)^3 =

If omega is the complex cube root of unity, then find omega+1/omega

If A =({:( 1,1,1),( 1,omega ^(2) , omega ),( 1 ,omega , omega ^(2)) :}) where omega is a complex cube root of unity then adj -A equals

If p=a+b omega+c omega^(2);q=b+c omega+a omega^(2) and r=c+a omega+b omega^(2) where a,b,c!=0 and omega is the complex cube root of unity,then