Home
Class 12
MATHS
Prove : cos15^(@) - sin15^(@) = 1//sqrt2...

Prove : `cos15^(@) - sin15^(@) = 1//sqrt2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos 15 ^(@) - sin 15^(@) = (1)/(sqrt2)

Prove that: cos15^@-sin15^@=1/sqrt2

Prove that (i) "cos " 15^(@) - " sin " 15^(@) = (1)/(sqrt(2)) (ii) " cot " 105^(@) - " tan " 105^(@) =2sqrt(3) (iii) (tan 69^(@) + tan 66^(@))/(1-tan 69^(@) tan 66^(@)) =-1

Prove that 4 sin 15^(@) sin 75^(@) = sqrt2 ( cos105^(@) + sin 75^(@))

The value of cos15^(@)-sin15^(@) is

Prove that, cos^(2)45^(@)-sin^(2)15^(@)=sqrt(3)/(4)

The value of cos 15^(@) - sin 15^(@) is equal to .................. A) (1)/(sqrt2) B) (1)/(2) C) -(1)/(sqrt2) D) 0

Prove that sin 75^(@) - sin 15^(@) = cos 105^(@) + cos 15^(@)

Prove that (i) " 2 cos " 45^(@) " cos " 15^(@)=((sqrt(3)+1))/(2) " "(ii) 2 " sin " 75^(@) " sin " 15^(@)=(1)/(2) (iii) " cos " 15^(@) - " sin " 15 =(1)/(sqrt(2))

Prove that cos^2 45^@-sin^2 15^@=sqrt3/4