Home
Class 12
MATHS
If 4^(log9(3))+9^(log2(4))=10^(logx(83))...

If `4^(log_9(3))+9^(log_2(4))=10^(log_x(83))` then x =

Promotional Banner

Similar Questions

Explore conceptually related problems

4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83), then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

4^(log_9 3)+9^(log_2 4)=1 0^(log_x 83) , then x is equal to

Solve : (iii) 4^(log_(9^3))+9^(log_(2^4))=10^(log_(x^83))

The value of ' x 'satisfying the equation,4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83) is

The value 'x' satisfying the equation, 4^(log_(9)3)+9^(log_(2)4)=10^(log_(x)83)is ____

The value 'x' satisfying the equation, 4^(log_(g)3)+9^(log_(2)4)=10^(log_(x)83)is ____

if 2^(log_(3)9) + 25 log_(9)3 = 8 log_(x)9 then x= _______

If 4^(log16^4)+9^(log3^9)=10^(logx^83 , find x.