Home
Class 12
MATHS
The range of g so that we have always a ...

The range of g so that we have always a chord of contact of tangents drawn from a real point `(alpha, alpha)` to the circle `x^(2)+y^(2)+2gx+4y+2=0`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The length of the chord of contact of the tangents drawn from the point (-2,3) to the circle x^2+y^2-4x-6y+12=0 is:

The length of the chord of contact of the tangents drawn from the point (-2,3) to the circle x^2+y^2-4x-6y+12=0 is:

Find the equation to the chord of contact of the tangents drawn from an external point (-3, 2) to the circle x^2 + y^2 + 2x-3=0 .

Find the equation to the chord of contact of the tangents drawn from an external point (-3, 2) to the circle x^2 + y^2 + 2x-3=0 .

Find the equation to the chord of contact of the tangents drawn from an external point (-3, 2) to the circle x^2 + y^2 + 2x-3=0 .

If the chord of contact of tangents drawn from the (h, k) to the circle x^2+y^2=a^2 subtends a right at the centre, then:

Statement-1: The line x+9y-12=0 is the chord of contact of tangents drawn from a point P to the circle 2x^(2)+2y^(2)-3x+5y-7=0 . Statement-2: The line segment joining the points of contacts of the tangents drawn from an external point P to a circle is the chord of contact of tangents drawn from P with respect to the given circle

Statement-1: The line x+9y-12=0 is the chord of contact of tangents drawn from a point P to the circle 2x^(2)+2y^(2)-3x+5y-7=0 . Statement-2: The line segment joining the points of contacts of the tangents drawn from an external point P to a circle is the chord of contact of tangents drawn from P with respect to the given circle

Find the condition that the chord of contact of tangents from the point (alpha, beta) to the circle x^2 + y^2 = a^2 should subtend a right angle at the centre. Hence find the locus of (alpha, beta) .

Find the condition that the chord of contact of tangents from the point (alpha, beta) to the circle x^2 + y^2 = a^2 should subtend a right angle at the centre. Hence find the locus of (alpha, beta) .