Home
Class 12
MATHS
If xn>x(n-1)>.......>x2>x1>1 then the v...

If `x_n>x_(n-1)>.......>x_2>x_1>1` then the value of `log_(x_1) log_(x_2) log_(x_3).......log_(x_n) x_n^(x_(n-1)^(....x_1))` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]

The value of x, log_(1/2)x >= log_(1/3)x is

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

the value of log x+log(1+(1)/(1+x))+log(1+(1)/(2+x))+............+log(1+(1)/(n-1+x))

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is