Home
Class 11
MATHS
f(x)=(1)/(x^(2))bar(2)(Upsilon,F(x+h)-F(...

f(x)=(1)/(x^(2))bar(2)(Upsilon,F(x+h)-F(x-h)" ञ हान "bar(२)(delta-

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(1)/(x^2) , show that f(x+h)-f(x-h)=-(4xh)/((x^2-h^2)^2) .

If f(x)=(1)/(x), evaluate lim_(h rarr0)(f(x+h)-f(x))/(h)

Let f,g, h be differentiable functions of x. if Delta = |(f,g,h),((xf)',(xg)',(xh)'),((x^(2) f)'',(x^(2)g)'',(x^(2) h)'')|and, Delta' = |(f,g,h),(f',g',h'),((x^(n)f'')',(x^(n) g'')',(x^(n) h'')')| , then n =

Let f,g, h be differentiable functions of x. if Delta = |(f,g,h),((xf)',(xg)',(xh)'),((x^(2) f)'',(x^(2)g)'',(x^(2) h)'')|and, Delta' = |(f,g,h),(f',g',h'),((x^(n)f'')',(x^(n) g'')',(x^(n) h'')')| , then n =

If h(x)=[f(x)]^(2)+[g(x)]^(2) and f'(x)=g(x), f''(x)=-f(x) , h(5)=10 find h(10).

If f(x)=1/(4x^(2)) , then proved that (f(x-h)-f(x+h))/h=x/((x^(2)-h^(2))^(2))

Let f be a twice differentiable function such that f''(x)=-f(x)" and "f'(x)=g(x)."If "h'(x)=[f(x)]^(2)+[g(x)]^(2), h(a)=8" and "h(0)=2," then "h(2)=

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .