Home
Class 12
MATHS
For the functions defined parametrically...

For the functions defined parametrically by the equations
`f(t)=x={{:(2t+t^(2)sin.(1)/(t),,,tne0),(0,,,t=0):}` and
`g(t)=y={{:((1)/(t)"sint"^(2),t ne0),(0,t =0):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a function y=y(x) be defined parametrically by x=2t-|t|y=t^(2)+t|t| then y'(x),x>0

If y = f(x) defined parametrically by x = 2t - |t - 1| and y = 2t^(2) + t|t| , then

Let a function y = y (x) be defined parametrically by x = 2t - |t|, y =t^2 +t|t| . Then y^(1) (x), x gt 0

Let f(t)=|{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}| .Then find lim_(t to 0) (f(t))/(t^(2))

Let f(t)=|{:(cos t,,t,,1),(2 sin t,,t,,2t),(sin t,,t,,t):}| .Then find lim_(t to 0) (f(t))/(t^(2))

The equations x=(1)/(2)(t+(1)/(t)), y=(1)/(2)(t-(1)/(t)), t ne 0 , represent