Home
Class 11
MATHS
If lim(x rarr1)(3-x+a[x-1]+b[x+1]) exist...

If `lim_(x rarr1)(3-x+a[x-1]+b[x+1])` exists (where [ ] denotes the greatest integer function),then value of `a + b`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

lim_(x rarr1)(1-x+[x-1]+[1-x])= where [.] denotes the greatest integer function

lim_(x rarr-1)([x]+|x|). (where [.] denotes the greatest integer function)

lim_(x rarr1)(x sin(x-[x]))/(x-1) ,where [.]denotes the greatest integer function, is

lim_(x rarr1)(1+x+[x-1]+[1-x]) is equal to x rarr1 (where [1 denotes greatest integer function)

If lim_(x rarr1)(2-x+a[x-1]+b[x+1]) exisits,where [x] denotes the greatest integer less than or equal to x, then a+b

The value of lim_(x rarr2)([2-x]+[x-2]-x) equals (where [.] denotes greatest integer function)

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

lim_(x rarr1^(-1))([x])^(1-x) where [.] denotes greatest integer function