Home
Class 10
MATHS
ul(HW)." The integral "int(1)^(2)e^(x)*x...

ul(HW)." The integral "int_(1)^(2)e^(x)*x^(2)(2+log_(e)x)dx" equals : "

Promotional Banner

Similar Questions

Explore conceptually related problems

The intergral int_(1)^(2) e^(x) . X^(2) (2 + log_(e)x) dx equals "

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

int_(1)^(e)(e^(x)(x log_(e)x+1))/(x)dx is equal to

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

int_(1)^(3)|(2-x)log_(e )x|dx is equal to:

" (2) "int_(1)^(2)(log e^(x))/(x^(2))dx

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is

The value of the integral int_(1)^(2)e^(x)(log_(e)x+(x+1)/(x))dx is-