Home
Class 14
MATHS
[" यदि "a^(2)+b^(2)+c^(2)+3=2(a+b+c)" हो...

[" यदि "a^(2)+b^(2)+c^(2)+3=2(a+b+c)" हो,तो "(a+b+c)" का "],[[" मान है ",,,],[" (a) "2," (b) "3," (c) "4," (d) "5]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a(a+b+c)

Prove: |a^3 2a b^3 2b c^3 2c|=2(a-b)(b-c)(c-a)(a+b+c)

If a^2 + b^2 + c^2 = 2(a -b -c)- 3 ,then the value of (a- b + c) is यदि a^2 + b^2 + c^2 = 2(a -b -c)- 3 तो (a- b + c) का मान है-

यदि A= -(2x+3) , B= -3(x-2) तथा C=-2x+7 है। तब K का मान ज्ञात करो, यदि (A+B+C)=Kx

The value of [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] is equal to: (Given a ne b ne c ) [(a^2-b^2)^3+(b^2-c^2)^3 + (c^2-a^2)^3] div [(a-b)^3+(b-c)^3+(c-a)^3 ] का मान बराबर है: ( a ne b ne c दिया)

If ab + bc + ca = 8 and a^2+b^2+c^2=20 , then a possible value of 1/2 (a + b + c) [(a-b)^2+(b-c)^2+(c-a)^2] is यदि ab + bc + ca = 8 है और a^2+b^2+c^2=20 , है, तो 1/2 (a + b + c) [(a-b)^2+(b-c)^2+(c-a)^2] का संभावित मान है :

If 9a^2+4b^2+c^2+21= 4(3a + b - 2c) , then the value of (9a + 4b - c) is : यदि 9a^2+4b^2+c^2+21= 4(3a + b - 2c) , है, तो (9a + 4b - c) का मान क्या होगा ?

Show that |{:(a-b-c," "2a," "2a),(" "2b,b-c-a," "2b),(" "2c," "2c,c-a-b):}|=(a+b+c)^(3)

prove that, |{:(" "2a,a-b-c," "2a),(" "2b," "2b,b-c-a),(c-a-b," "2c," "2c):}|=(a+b+c)^3

If a=2b=8c and a+b+c = 13 then the value of (sqrt(a^2+b^2+c^2))/(2c) is: यदि a=2b=8c है, तथा a+b+c = 13 है, तो (sqrt(a^2+b^2+c^2))/(2c) का मान क्या होगा ?